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H I G H L I G H T S

� The effects of small-scale of the both nanoflow and nanostructure on the vibrational response of fluid flowing single-walled carbon nanotubes are
investigated.

� Critical flow velocity decreases as the wave number increases, employed.
� Kn effect has considerable impact on the reduction of critical velocities especially for the air-flow flowing through the CNT.
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a b s t r a c t

In this study, the effects of small-scale of the both nanoflow and nanostructure on the vibrational re-
sponse of fluid flowing single-walled carbon nanotubes are investigated. To this purpose, two various
flowing fluids, the air-nano-flow and the water nano-flow using Knudsen number, and two different
continuum theories, the nonlocal theory and the strain-inertia gradient theory are studied. Nano-rod
model is used to model the fluid-structure interaction, and Galerkin method of weighted residual is
utilizing to solve and discretize the governing obtained equations. It is found that the critical flow ve-
locity decreases as the wave number increases, excluding the first mode divergence that it has the least
value among of the other instabilities if the strain-inertia gradient theory is employed. Moreover, it is
observed that Kn effect has considerable impact on the reduction of critical velocities especially for the
air-flow flowing through the CNT. In addition, by increasing a nonlocal parameter and Knudsen number
the critical flow velocity decreases but it increases as the characteristic length related to the strain-inertia
gradient theory increases.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Due to ongoing development of the science and technology, the
humankind requirements become different, and to satisfy not only
routine needs but also inborn curiosity to know, many researches
are done about unknowns. One of those is the plenty of rooms that
exist at the bottom, Feynman said [1]. Today, many scientist in-
terested in nanotechnology field, and chiefly carbon nanotubes
discovered by Iijima [2] in 1991. Just one of the astonishing
properties of CNTs is their mechanical behavior because of their
high strength, geometrical structure, low mass density and linear
elastic behavior. Nano-fluidic devices are from the subjects that
they are studied by researchers in this field such as fluid storage,
fluid transport and drug delivery [3,4]. To this end, the dynamic

behavior of CNT conveying fluid should be investigated. For ex-
ample, Lee and Chang [5] investigated the effect of small-size on
the equations of motion using nonlocal elasticity. They found that
the combination of the first and the second modes appeared above
the critical flow velocity. Wang et al. [6] studied the wave propa-
gation characteristics in nanotubes conveying viscous fluid based
on the nonlocal continuum theory. They reported that with dif-
ferent fluid viscosities, the dispersion relation is almost the same
for small wave number; but for larger wave number, the wave
frequency becomes higher by increasing the fluid viscosity. Rashidi
et al. [7] presented one model for a single mode of coupled vi-
bration of fluid conveying CNTs considering the slip boundary
conditions of nanoflow. They expressed that the critical flow ve-
locities could decrease if the passage fluid is a gas with nonzero
Kn, in comparison with a liquid nanoflow. Ghavanloo and Fa-
zelzadeh [8] investigated the vibration characteristics of nano-
tubes embedded in viscous fluid by the Timoshenko beam model
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with the nonlocal thermal elastic theory and they discussed effects
of both the internal and external fluid. They revealed that the
critical velocity could be reduced by the external fluid. Moreover,
recent researchers found that the dynamical coupling of the liquid
flow and electron transport in the structure of water-filled nano-
tube could generate voltage, which allowed the application of the
flow sensor and energy harvesting at the nano scale [9,10].

The above-mentioned researches and another same works,
often studied about transverse vibration response of CNTs con-
veying fluid. Axial vibration behavior of nanorod is investigated by
Aydogdu [11]. He developed and applied an elastic beam models to
investigate the small-scale effect on axial vibration of nanorods
based on local and nonlocal rod theories. He found that the axial
vibration frequencies are highly overestimated by the classical
(local) beam model because of ignoring the effect of small length
scale. Aydogdu [12] developed longitudinal wave propagation for
Elastic multi-walled local and nonlocal rod models. He considers
the effect of the van der Waals force in the axial direction and
demonstrates the possibility of relative displacement between
nanotubes. Murma and Adhikari [13] developed a nonlocal rod
model for longitudinal vibration of double-nanorod-system
(DNRS) based on Eringen's nonlocal continuum mechanics. They
found that the classical nanorod model overestimates the long-
itudinal vibration frequencies of DNRS and the stiffness of the
coupling spring in DNRS has a subduing effect on the small-scale
effects. Hu et al. [14] presented a brief review of vibrations of
SWCNTs using the nonlocal beam, nonlocal rod and molecular
dynamic (MD) simulation. They reported that the nonlocal model
can predict MD results better than the classical model does for
short SWCNTs, and also the MD results indicated that the classical
beam and rod models can give good predictions of fundamental
frequencies of long SWCNTs when the length is larger than 3.5 nm.
Li et al. [21] investigated the nonlocal theoretical approaches and
atomistic simulations for longitudinal free vibration of nanorods/
nanotubes and verification of different nonlocal models. They
provide a comparative calculation for dimensional natural fre-
quencies with respect to length of CNTs by different methodolo-
gies to explain why the softening and hardening nonlocal models
are both correct in nonlocal elasticity theory. The free vibration of
embedded single-walled fluid-conveying carbon nanotubes in
magnetic and temperature fields is investigated by Wang et al.
[22]. They reported that the fluid flowing inside the nanotubes can
make the tubes more flexible. The frequencies and critical flow
velocity are much influenced by temperature change, magnetic
flux and Pasternak-type foundation, which can make fluid-con-
veying wavy SWCNTs stiffer. Guo and Zhang [23] studied the
nonlinear vibration behaviors of a reinforced composite plate with
the carbon nanotubes under combined the parametric and forcing
excitations using the Mori–Tanaka method and the method of
calculating the average stress of composite materials. Fereidoon
et al. [24] studies the nonlinear vibration of viscoelastic embedded
nano-sandwich structures containing of a double walled carbon
nanotube (DWCNT) integrated with two piezoelectric Zinc oxide
(ZnO) layers. They indicate that the frequency and critical velocity
increases with assume of surface effects.

In this study, based on the nanorod model and by using some
basic principles of the fluid mechanics, the governing equation of
motion related to the longitudinal vibration response of carbon
nanotubes conveying viscous fluid is investigated. In order to in-
dicate the small-scale effects of the nanostructure, two continuum
theories, the nonlocal theory and the strain-inertia gradient theory
are used. To show the small-size effect of the nanoflow, Knudsen
number is considered both gas and liquid flowing through CNT
and then the results are compared. The vibration analysis of the
system and discretization of the equations of motion are accom-
plished by utilizing the Galerkin approximate method. The first

three frequencies and critical flow velocities for each fluid are
determined for two simply supported ends CNT conveying fluid.
The effects of the nonlocal parameter, characteristic lengths re-
lated to the strain-inertia gradient theory and Knudsen number
are elucidated on the natural frequencies and critical flow
velocities.

2. The governing equations of motion for fluid flow-conveying
CNTs

2.1. The equation of motion of the pipe

According to the Newton's second law, one knows:

∑ ∑+ = ∂
∂ ( )F F m

U
t 1ext cint

2

2

where the first and second terms on the left hand side are the sum
of the external and internal forces acting on the tube at the x di-
rection, respectively; mc is the mass per unit length; t, time and U
is the longitudinal displacement of the CNT wall.

The internal forces follow from the equilibrium equation are:
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where fbx is the body force acting on the x direction such as the
magnetic field force and et cetera that, they are being ignored in
here and N is the axial internal force as:
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Therefore, Eq. (1) can be rewritten as:
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2.2. The fluid's behavior on the axial direction

According to the Navier-Stokes's equation, we have:
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where
→

DV Dt/ is the material derivative; ρ,
→
V and

→
P are the mass

density, the flow velocity and the pressure of the flowing fluid,

respectively;
→
Fbody represent the body forces acting on the fluid; ∇

and ∇2 are the gradient and the Laplace operators, respectively.
The fluid flow is considered incompressible, Newtonian, laminar,
infinite, uniform flow and viscous.

The differential form of the equation of conservation mo-
mentum as an equilibrium equation for each fluid element at the
axial direction can be written as:
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in which the normal stress σx, following the continuity principle is
[15]:

σ μ= − + ∂
∂ ( )p
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x

2 7x

where u is the velocity of the fluid flow in the longitudinal di-
rection on the CNT wall.

According to the definition of the material derivative in the
lagrangian system, replaced it by the acceleration of the fluid
element on the right hand side of Eq. (6); by substituting Eq. (7)
into Eq. (6) and equating the flow velocity in the y and z direction
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