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H I G H L I G H T S

� The amplitude–frequency response
is presented by the multiple scale
method.

� The gap between negative and posi-
tive bifurcation points can be en-
hanced by parametric load.

� The nonlocal continuum theory can
present a more proper model.

G R A P H I C A L A B S T R A C T

It can be observed that the gap between two bifurcation points becomes wider with the axial load
increasing, which means the parametric excitation can enhance the stable region.

Relation between the detuning parameter and response of principle parametric resonance for na-
notube with the effects of parametric excitation. (a) F¼0.0005 EAc, (b) F¼0.001 EAc and (c) F¼0.002 EAc.
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a b s t r a c t

In the present work, the nonlinear vibration of a carbon nanotube which is subjected to the external
parametric excitation is studied. By the nonlocal continuum theory and nonlinear von Kármán beam
theory, the governing equation of the carbon nanotube is derived with the consideration of the large
deformation. The principle parametric resonance of the nanotube is discussed and the approximation
explicit solution is presented by the multiple scale method. Numerical calculations are performed. It can
be observed that when the mode number is 1, the stable region can be significantly changed by the
parametric excitation, length-to-diameter ratio and matrix stiffness. This phenomenon becomes different
to appear if the mode number increases. Moreover, the small scale effects have great influences on the
positive bifurcation point for the short carbon nanotube, and the nonlocal continuum theory can present
the proper model.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the superior characteristics for the large Young's mod-
ulus, yield strength, flexibility, and conductivity properties, na-
nostructures are widely applied to nanoelectronics, nanodevices,
nanosensors and nanocomposites [1–6]. Because the atomistic

approach is much time-consuming and it is rather difficult to
perform the experiment at the nanoscale, the classical mechanics
method is widely accepted due to its computational efficiency
and simplicity.

Different from the classical continuum model, the nonlocal
elastic theory presented by Eringen [7,8] assumes that the stress at
a point is a function of strains at all points in the system. Then the
nonlocal continuum theory can effectively describe the small scale
effects at the nanoscale. As a result, quite a lot of investigations are
devoted to the mechanical properties of nanotubes by the nonlocal
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continuum theory, including buckling [9–13], wave propagation
[14–21] and vibration [22–34] behaviors.

Although much work has been reported by the nonlocal con-
tinuum model, they are mainly focused on the mechanical prop-
erties of the carbon nanotube with linear problems. Besides sev-
eral researches on the nanotube with nonlinear characteristics
[35–41], a lot of nonlinear problems for carbon nanotubes under
the external excitation need to be considered in the future work.
On the other hand, it is known that during the nonlinear forced
vibration, the structure under the parametric excitation can show
the unstable region. However, such a typical phenomenon has not
been reported on the carbon nanotube, which is mainly because of
the quite emerging subject on the nanotube with nonlinear
vibration.

This wok is focused on the properties of the stable region for
the nanotube under the external parametric excitation. By the
nonlocal continuum theory and the multiple scale method, the
governing equation is derived and the principle parametric re-
sonance is analyzed. This work is expected to be helpful for the
design and analysis of the nanoscaled structures.

2. Equations and derivations

As shown in Fig. 1, the carbon nanotube embedded in the
viscous elastic matrix is subjected to the parametric excitation
with the harmonic frequency Ω. The elastic stiffness and the
damping coefficient of the matrix are kw and μ. The length of the
carbon nanotube is L and the deformation is along the z-axis with
the displacement denoted as w.

Based on the nonlocal continuum theory presented by Eringen
[7,8], the constitutive relation with the form of the integral
equation is

∫τ α σ( ) = ( ′) ( ′) ( ′) ( )dVx x x x x, , 1kl
V

kl

where τkl is the nonlocal stress tensor, σkl the local stress tensor,
α ( ′)x x, the kernel function which describes the influence of the
strain at various location x' on the stress at a given location x and
V the entire body.

Due to the difficulty to deal with the integral form in Eq. (1), its
differential expression is usually applied as [30]:

σ ε[ − ( ) ∇ ] = ( )e a C1 : , 20
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where C0 is the elastic stiffness matrix of the classical elasticity, ε
the strain vector, e0 the constant appropriate to each material and
a the internal characteristic length (e.g. the length of C–C bond, the
lattice spacing and granular distance, etc.). The value of e0 is de-
termined from experiments or by matching dispersion curves of
plane waves with the atomic lattice dynamics. And e0a means the
scale coefficient which denotes the small scale effect on the me-
chanical characteristics of nanostructures.

For the flexural vibration of the carbon nanotube, the relation
between the stress and strain for one-dimensional state can be
expressed as the following form:
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where E is Young's modulus.
Based on the Euler–Bernoulli beam model, the axial force and

the resultant bending moment can be expressed as

∫ ∫σ σ= = ( )N dA M z d A, , 4A
x

A
x

where z is the transverse coordinate measured in the deflection
direction and A the area of the cross section of the nanotube.

The displacements have the following forms:
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where u and w are the axial and transverse displacements,
respectively.

For the nonlinear vibration with a large amplitude, the nonzero
von Kármán nonlinear strain should be considered and the rela-
tion between the strain and displacement is given by
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where ε0 is the nonlinear extensional strain, κ = − ∂ ∂w x/2 2 the
bending strain and ε1 the strain induced by κ.

Then, the von Kármán nonlinear strain (i.e. εnon) is
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The equation of motion can be given as [42,43]
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where S is the shear force, ρ the mass density of the nanotube, kw
w denotes the load on per unit axial length from the matrix which
can be described as the Winkler model and kw is the material
constant which is determined by the elastic matrix.

From Eqs. (3)–(6), the axial load and the bending moment can
be expressed as
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where ∫=I z d A
A

2 is the moment of inertia.
Then the nonlinear vibration equation for the nanotube under

the axial parametric load is
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Fig.1. Nanotube embedded in viscous elastic matrix under the parametric excitation.
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