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Coherent electron transport in a helical nanotube
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HIGHLIGHTS

e Fano resonance induced by the geometric potential of a helical nanotube is analyzed.

e Symmetry blocking in a bent cylindrical surface is found and proved.

e The transport of double-degenerate mode in a helical nanotube is reminiscent of the Zeeman coupling.
e New plateau in conductance appears for a helical nanotube with suitable length.
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The quantum dynamics of carriers bound to helical tube surfaces is investigated in a thin-layer quanti-
zation scheme. By numerically solving the open-boundary Schrédinger equation in curvilinear co-
ordinates, geometric effect on the coherent transmission spectra is analysed in the case of single pro-
pagating mode as well as multimode. It is shown that, the coiling endows the helical nanotube with
different transport properties from a bent cylindrical surface. Fano resonance appears as a purely geo-
metric effect in the conductance, the corresponding energy of quasibound state is obviously influenced
by the torsion and length of the nanotube. We also find new plateaus in the conductance. The transport
of double-degenerate mode in this geometry is reminiscent of the Zeeman coupling between the
magnetic field and spin angular momentum in quasi-one-dimensional structure.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The realization of growing quasi-two-dimensional surfaces of
arbitrary shape in nanoscale helps people find new physical effects
which are originated from the topology. Many intriguing phe-
nomena associated with the surface curvatures, such as electron
localization [1-3], Aharonov-Bohm oscillations [4,5] and aniso-
tropic magnetoresistance [6], have been investigated. Briefly
speaking, in both theoretical and experimental fields scientists
have accomplished essential developments for the curved two-
dimensional (2D) systems.

To describe a particle confined to a curved surface, there is a
triumphant approach that is introduced by Jensen and Koppe [7]
and da Costa [8] (JKC). In this approach a confining potential is
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introduced to squeeze [9] the particle on curved surface. The in-
troduced potential gives rise to that the quantum excitation en-
ergies in the direction normal to the surface are substantially
larger than those in the tangential directions. Hence one can
reasonably neglect the particle motion in the normal direction,
and focus on the effective and dimensionally reduced equation. It
is a great achievement to the JKC method that a curvature-induced
potential appears in the effective 2D equation. The induced po-
tential is the well-known geometric potential. The JKC approach
has been successfully applied to many nanostructures with dif-
ferent geometries, such as rolled-up nanotubes [6,10], Md&bius
stripes [3,11] and helicoidal ribbon [12]. And the method is also
proved by experimental results [13-15], such as the geometric
effects on electron states [15], on proximity effects [16], and on the
transport in photonic topological crystals [17].

In past decades, various interesting properties in carbon na-
notubes have been widely and deeply studied, such as quantum
transport and conductance [18-24], size effects [25-27]. Quantum
transmission is a natural property of nanostructure devices, in
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which the topological effect is considerable. Recently, the geo-
metric effects on the coherent electron transport have been in-
vestigated in bent cylindrical surfaces [28], and in the surface of a
truncated cone [29]. Additionally, the curvature effects on vi-
trification behavior has been discussed for polymer nanotubes
[30]. In the nanotubes the geometrical curvature plays an im-
portant role to influence their quantum properties. At the same
time, in twisted nanoscale systems some quantum properties and
phenomena have been studied, such as bound states [31-33], co-
herent electron transport [32,34], spin—orbit coupled electron [35].
In terms of those investigations, one can realize that the torsion-
induced effect is significant to the quantum properties of the
twisted systems. Consequently, in the present study we will in-
vestigate the coherent electron transport in helically coiled na-
notubes (hereafter referred to as helical nanotubes) with finite
length.

In this work, we treat the electron states in the effective mass
approximation, which is valid for the conventional semiconduct-
ing nanotubes. The ballistic 1D transport in nanotubes has been
demonstrated by several experiments [36-38]. In the case of
semiconducting helical nanotubes, by taking into account the local
change of electronic property [39,40] induced by geometric de-
formation, the envelope-function approach can still be used.
Electron localization caused by the mixing of ¢ and x states are
presented by the effective geometric potential in this approach.
We will employ quantum transmitting boundary method (QTBM)
[41] to numerically solve the transmission probability. This
method is capable of solving open-boundary transmission pro-
blems for arbitrary internal geometries, since it can be generalized
to include the metric tensor of the system [28,32]. In the calcu-
lational procedure, it is treated as that the two components of
effective mass tensor [42,43] in two directions on the surface of 2D
nanotubes are equal. To avoid misunderstanding, we stress that in
our analysis, only the geometric chirality associated with torsion is
considered and discussed, the effect of the chirality of atomic
structure is ignored.

This work is structured as follows. In Section 2, we outline the
mathematical description of an electron confined to the surface of
a helical tube, and analyse the geometric potential and modes in
leads. In Section 3, we numerically calculate the transmission
probability in helical nanotubes and discuss the relationship be-
tween the transport and the symmetries in the helical system. In
Section 4, the conductance at zero temperature is presented. Fi-
nally, in Section 5, we have a brief summary.

2. Model

2.1. Quantum dynamics of a particle constrained on a helical tube
surface

One can construct a helical tube (as shown in Fig. 1) by moving
a disk with radius po along a helical line parametrized as x(s). To
describe this geometry we introduce the Frenet frame vectors t, n
and b which satisfy

t 0 k) 0 )¢
n|=|-«() 0 TS ||y,
b 0 -z(55 0 J\b )

where t, n and b are the unit tangent vector, normal vector and
binormal vector of x(s), respectively, the dot denotes derivative
with respect to the natural parameter s, and «x(s) and z(s) are the
curvature and torsion of x(s), respectively. During the disk moving
along x(s), the disk is always orthogonal to t, on the disk plane n
and b shift due to z(s). It is convenient to define two new vectors

s=0

Fig. 1. Surface of a helical tube with two straight cylinders at the two ends. The
geometry is parametrized by s and ¢.

N = cos (s)n + sin 8(s)b, 2)
B = —sind(s)n + cos 8(s)b, 3
where the angle 6(s) = — /s; r(s)ds'.

In this new frame, N and B are fixed on the disk. The relation
equation (1) becomes

t 0 &) —n®])t
N[=[-¢¢) 0 0 [IN]
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where £(s) = x(s)cos 6(s), n(s) = k(s)sin 6(s). Consequently, points
on the tube surface can be parametrized as

R(s, ¢) = X(s) — pylsin(¢)B + cos(¢)N], (5)

where ¢ is the angular position of the point on the edge of the
disk.

It is straightforward now to get the metric tensor of the
tube surface by using the definition g; = ;’—;% and the relation

equation (4),
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