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� The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect.
� The fluid flowing in nanotube causes a decrease in the natural frequency of the system.
� The critical flow velocity decreases as the nonlocal parameter increases.
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a b s t r a c t

Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To
this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying
fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is si-
mulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and
stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes
equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow
velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are con-
sidered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is
employed and appropriate simply supported boundary conditions are applied. The results show that the
axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in
nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural
frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the
critical flow velocity decreases as the nonlocal parameter increases.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Carbon is one of the wonderful elements in nature that is found
in several solid types. Carbon atoms have been set systematically
next to each other in their structures causing them to have re-
markable properties, structures and behaviors. Extensive theore-
tical and experimental researches showed that they can be used in
wide applications in nanotechnology, nano-biology as biological
and molecular sensors, nano-electronics and nano-electro-
mechanics (NEMS) as scanning molecule and ion conductance
microscopy, nano-composites, nanofluidic-devices and other ran-
ges of sciences as well as medical fields such as fluid storage, fluid
transport and drug delivery. One of the subjects investigated for

these practical applications is the dynamic behavior of CNT con-
veying fluid. In the nano-dimension, size and physical posture of
nano-materials and manner of atomic bonds impress properties of
materials. In addition, in the nano-scale, the motion of walled and
fluid (internal or external), and their interaction that violently
depends on size-scale, are of great importance. To measure and
investigate the mechanical properties of CNTs, computational si-
mulations are considered as strong and adequate methods. These
methods include two main sets: molecular dynamic simulations
(MD) and elastic continuum mechanics. In recent years, the con-
tinuum mechanic theories have attracted by researchers’ attention
for studying the mechanical behavior of CNT such as wave pro-
pagation, vibration and instability analysis. These continuum
theories are of two forms, classical and non-classical. Classical
continuum elasticity cannot predict the size-effect. For this reason,
non-classical theories have usually been used in the theoretical
researches of structures at small scales. There are various size
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dependent continuum theories such as surface stress theory,
couple stress theory, strain gradient elasticity theory, strain/inertia
gradient theory, modified couple stress theory and nonlocal elas-
ticity (stress gradient) theory. The nonlocal continuum theory that
overcomes the disadvantages of classical elasticity theory, was
introduced for the first time by Eringen [1,2] in 1972. He in-
troduced the nonlocal parameter; and by applying it, he was able
to modify the classical continuum mechanics for taking the small-
scale effects into account. Up to this time, many researchers in this
field have investigated many aspects of vibration behavior with
the mentioned theories. For example, Yoon et al. [4,5] studied the
influence of internal flowing fluid on free vibration and flow-in-
duced structural instabilities (divergence and flutter) of CNTs. They
indicated that internal moving fluid has a substantial effect on
vibrational frequencies especially for suspended, longer and lar-
ger-innermost-radius CNTs at higher flow velocity; and decaying
rate of amplitude and the critical flow velocity for flutter in-
stability in some cases may fall within the range of practical sig-
nificance. Lee and Chang [6] used the nonlocal elastic model to
analyze the free transverse vibration of the fluid-conveying
SWCNT. They obtained that increasing the nonlocal effect de-
creased the real component of frequency, and that the mode shape
was significantly influenced by the nonlocal parameter. Wang [7]
investigated the surface effects on the vibration and stability of
fluid-conveying nanotubes and nanopipes with inner and outer
surface layers. He demonstrated that the surface elasticity and
residual surface tension significantly affect the natural frequency
and critical flow velocity of fluid-conveying nanotubes. Far-
shidianfar et al. [8] studied the free vibration and instability of
fluid conveying SWCNTs by considering the effect of internal
moving fluid, boundary conditions, elastic media and geometrical
changes. In that paper, they observed that the divergence in-
stability of SWCNT occurred at a certain critical velocity domain.
Wang and Ni [9] reappraised the computational modeling of car-
bon nanotubes conveying viscous fluid, and reported that the ef-
fect of viscosity of fluid flow on the vibration and instability of
CNTs could be ignored. Mirramezani and Mirdamadi [11] in-
vestigated the effect of viscosity of fluid flow in a channel, and the
interaction between the fluid and structure. They reappraised the
governing differential equation of pipe conveying viscous fluid and
proposed that CNT conveying nano-fluid could remain more
stable; furthermore, they observed that unlike the nonlocal con-
tinuum theory, the natural frequency predicted by the strain gra-
dient theory is greater than that predicted by the classical con-
tinuum theory. Aydogdu [13] developed an elastic beam model
and applied it to investigate the small-scale effect on axial vibra-
tion of nanorodes, and found that the axial vibration frequencies
are highly overestimated by classical beam model because of ig-
noring the effect of small length scale. Murma and Adhikari [14]
developed a nonlocal rod model for longitudinal vibration of
double-nanorod-system (DNRS) based on Eringen's nonlocal con-
tinuum mechanics. They found that the longitudinal vibration
frequencies of DNRS are overestimated by the classical nanorod
model and that the stiffness of the coupling spring in DNRS has a
subduing effect on the small-scale effects. Kiani [15] explored the
free longitudinal vibration of tapered nanowires within the con-
text of nonlocal theory of Eringen. He obtained that for nanowires
with linearly varied radii, the proposed perturbation technique
would be a suitable tool for analytically studying the free dynamic
response of the nanowires with arbitrary varying radii. Nahvi and
Basiri [16] investigated the axial vibration response of non-uni-
form nanorod by employing the nonlocal elasticity model. They
found that the nonlocal vibration frequencies are smaller than the
local ones for both uniform and tapered cross-section nanorods.
Hu et al. [17] presented a brief review of vibrations of SWCNTs
using the nonlocal beam, nonlocal rod and MD simulation. They

reported that the nonlocal model can predict MD results better
than classical model does for short SWCNTs, but the scale para-
meter in nonlocal model should be determined carefully for dif-
ferent situations, and also the MD results indicated that the clas-
sical beam and rod models can give good predictions of funda-
mental frequencies of long SWCNTs when the length is larger than
3.5 nm. Li et. al. [24] studied the nonlocal theoretical approaches
and atomistic simulations for longitudinal free vibration of na-
norods/nanotubes. They examine longitudinal dynamic behaviors
of some common one-dimensional nanostructures (e.g. nanorods/
nanotubes) using the hardening nonlocal approach. Their work
proves that both the softening and hardening nonlocal models are
correct in the dimensional numerical comparisons and It is con-
cluded that the natural frequency for longitudinal free vibration is
significantly influenced by the nonlocal nanoscale effect via a di-
mensionless parameter. Hosseini and Goughari [25] investigate
the effect of a longitudinal magnetic field on the transverse vi-
bration of a magnetically sensitive single-walled carbon nanotube
(SWCNT) conveying fluid. Their results show that the fundamental
natural frequency and critical flow velocity for the SWCNT increase
as the nonlocal parameter increases, while in the presence of a
strong longitudinal magnetic field the influence of internal fluid
flow and nonlocal parameter on the vibrational frequencies of
SWCNT can be reduced. Moreover, Zhang et al. [26] and Lei et al.
[27] studies, respectively, the free vibration characteristics of
functionally graded carbon nanotube-reinforced composite plates
with elastically restrained edges and laminated plates with FG-
CNTRC layers. Similar to linear vibration analysis, buckling of skew
FG-CNTRC plates [28], postbuckling of FG CNTRC plates subjected
to in-plane compressive loads [29]. Oveissi et al. [30] investigated
the effects of small-scale of the both nano flow and nanostructure
on the vibrational response of fluid flowing single-walled carbon
nanotubes. They concluded that by increasing a non local para-
meter and Knudsen number the critical flow velocity decreases
but it increases as the characteristic length related to the strain-
inertia gradient theory increases.

In this paper, we applied some basic principles of fluid me-
chanics such as treatment of fluid with no-slip boundary condition
and Navier-Stokes’ equation, and reappraised the equation of
motion of pipe flowing viscous fluid by using them. Moreover, we
achieved a new equation for longitudinal vibrational behavior of
carbon nanotubes conveying fluid flow by investigating the in-
teraction of Fluid-Structure based on nonlocal elasticity theory of
Eringen. To this end, the analysis way is used and the effects of
internal fluid and size-scale of nanostructure on the longitudinal
natural frequencies, mode shapes and instabilities of SWCNTs are
studied.

2. A brief review of nonlocal theory of Eringen (stress
gradient)

2.1. Nonlocal constitutive relations

According to Eringen [1,2], essential equations of nonlocal
homogenous and isotropic linear elasticity, without considering
body forces, can be written as:
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where σij, εij and Hijkl are stress tensor, strain tensor and the fourth
order elasticity modulus tensor on classical elasticity, respectively.
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