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H I G H L I G H T S

� The static behavior of a nonlinear axial chain under distributed loading is examined.
� Exact analytical solutions based on Hurwitz zeta functions are presented.
� The nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity.
� A nonlinear continuum elasticity model is developed to capture the main phenomena observed regarding the discrete axial problem.
� This associated continuum is an enriched gradient-based or nonlocal axial medium.
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a b s t r a c t

The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The
FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring inter-
action. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and
cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of
linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible locali-
zation properties in the absence of energy convexity. A continuous approach is then developed to capture
the main phenomena observed regarding the discrete axial problem. The associated continuum is built
from a continualization procedure that is mainly based on the asymptotic expansion of the difference
operators involved in the lattice problem. This associated continuum is an enriched gradient-based or
nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the
continualization procedures to approximate the FPU lattice response. The Padé approximant used in the
continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the
limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system
behaves as a nonlocal axial system in dynamic but also static loading.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the 1950s, the study of oscillation in nonlinear lattices star-
ted with the Fermi-Pasta-Ulam (FPU) numerical experiment [1].
Fermi et al. accidentally found that the presence of a quadratic, a
cubic, or even a piecewise linear additional term in the restoring
force of an axial lattice with nearest neighbor interaction may be
responsible for the so-called vibrations mode exchange phenom-
enon with a recurrence phenomenon, i.e. the possibility for the

system to go back to its initial state after a recurrence time. The
unexpected results of their work led to the development of the
soliton theory by Kruskal and Zabusky [2] in the 1960s (see also
Maugin, [3,4]). There are very few analytical solutions for non-
linear dynamics lattice problems; an exception may be mentioned
for exponential interaction also called Toda lattice [5]. To date, to
the authors’ knowledge, analytical solutions for the dynamics of
FPU lattice with polynomial nonlinearities are still not available in
the literature. In this paper, we show that analytical solutions may
be achieved in the static range, in presence of quadratic-type
nonlinearity, which belongs to one of the three interaction con-
figurations studied by Fermi et al. [1]. The quadratic-type non-
linearity in the restoring force of the lattice is associated with a
cubic-type internal energy, by integration. Fermi et al. [1] initially
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considered a convex internal energy associated with a positive
additional cubic term in the discrete energy of the nonlinear lat-
tice system. In fact, convex and nonconvex type energy may be
obtained from the energy equation postulated by Fermi et al. [1].
Nonconvex energy may have a strong physical support, as com-
pared to the Lennard-Jones potential law for instance [6]. In the
Lennard-Jones potential, the repulsive force contribution between
atoms (Pauli repulsion) is combined with a long-range attractive
force (van der Waals force) responsible for the loss of convexity.
Therefore, the present paper explores both cases (convex and
nonconvex energy) with different physical and engineering ap-
plications. The inertia effects will be neglected, and the static be-
havior of a nonlinear inelastic axial lattice system will be ex-
amined in presence of distributed loading such as a chain under its
ownweight. To the authors’ knowledge, statics analytical solutions
of the FPU lattice have not been reported in the literature. The
paper of Gazis and Wallis [7] could be mentioned at this stage;
they analytically investigated the static behavior of a linear lattice
with nonlinear polynomial interaction concentrated at the border.

The paper also focuses on the possible definition of an
equivalent axial continuum able to reproduce the main phenom-
ena observed for the discrete lattice system. The definition of an
equivalent continuum from a discrete one may be labeled as a
continualization procedure. This question of relating discrete and
continuous systems is an old one, and was already initiated by
Lagrange [8] during the XVIIIth century. Lagrange [8] already
showed the link between one-dimensional string or axial lattices
with the associated one-dimensional asymptotic continua. During
the XIXth century, Piola introduced some nonlocal integral type
models from discrete microscale interactions, which may be ex-
panded using higher-order gradient models [9,10]. Continualiza-
tion procedures are based on various approximations of the dis-
crete operators by some continuous ones via Taylor expansion or
Padé approximants [2,11–15]. The so-called enriched continuum
equivalent to the discrete one is sometimes called a quasi-con-
tinuum [12]. It is generally dependent on the truncated terms in
the asymptotic expansion of the difference operators (see also the
analysis of Zabusky and Kruskal within the dynamics of solitons
[16]). The reader can refer to Rosenau [14], Palais [17] and Maugin
[4] for a historical perspective on the link between the Fermi-
Pasta-Ulam lattice model and the continualized wave propagation
equation. Zabusky and Kruskal [16] used a Taylor expansion of the
second-order finite difference operator arising in the discrete lat-
tice up to the fourth-order spatial derivative. Benjamin et al. [18]
and then Collins [12] proposed to use the inverse of the second-
order finite difference operator, thus avoiding the use of fourth-
order spatial operators. Padé approximants of the finite difference
operators were introduced by Rosenau for FPU lattice systems [14]
and are shown to be efficient for capturing the wave propagation
in the dynamics of axial lattice without changing the highest
spatial order of the wave equation. This rational expansion of the
difference operator has been widely used for one-dimensional and
two-dimensional media [11,13–15,19]. The quasi-continuum ap-
proximation of Toda lattice has been investigated by Hyman and
Rosenau [20]. The same methodology can be applied in the context
of static loading, as is shown in the paper. Most of the studies on
these nonlinear lattices focused on axial wave propagation. In the
present paper, we focus on the static problem of a nonlinear FPU
axial chain, and we develop some possible analytical exact solu-
tions for the lattice problem and approximate solutions for the
equivalent continuum problem.

A similar approach has been followed by Triantafyllidis and
Bardenhagen [21] who obtained numerical solutions for a non-
linear axial lattice under uniform axial load and with possible
interaction with direct or other adjacent elements. Triantafyllidis
and Bardenhagen [21] also investigated the possible

continualization of the nonlinear lattice problem, from the dis-
placement difference equation or directly from energy considera-
tions. More recently, the computational community has been at-
tracted by the numerical challenge of multiscale analysis, starting
from lattice material configurations. Fish and Chen [22] have de-
veloped a multiscale approach for both static and dynamic mole-
cular systems. Blanc et al. [23] provide an overview of mathema-
tical results in multiscale computations. Recently, Carcaterra et al.
[24] developed higher-order gradient continua from linear and
nonlinear lattice interactions. Exact solutions of linear lattice
problems can be attained from the resolution of linear finite dif-
ference equations (see for instance, Gazis and Wallis [7]; Mindlin
[25] or more recently Challamel et al. [26]). Mindlin [19] described
the behavior of a one-dimensional linear lattice, in the elastic
range, taking into account interactions of three adjacent elements,
and derived some possible gradient elasticity constitutive laws.
The link between Eringen's nonlocal elasticity and lattice proper-
ties has been already outlined by Eringen [27] for axial wave
propagation. It has been recently shown, using a continualization
procedure, that Eringen's nonlocal elasticity [27] can also be used
to describe the static and the dynamic behavior of linear lattice
systems with nearest neighbor interaction. This has been shown to
be relevant in linear elastic structural mechanics for axial, tor-
sional and bending beam problems, for both static and dynamic
applications (see Challamel et al., [26,28–30]). Eringen's non-
locality has also been shown to be efficient to capture the length
scale effect of two-dimensional lattice systems (Zhang et al.,
[31,32]). The length scale of such a nonlocal model can be analy-
tically adjusted from the size of the microscopic repetitive cell. The
definition of an equivalent nonlocal medium for nonlinear lattice
problems has probably been less investigated. Recently, the link
between Discrete Damage Mechanics and nonlocal Continuum
Damage Mechanics has been found for the bending problem of an
elastic-damage axial chain [33]. The present paper shows, from the
FPU lattice model, a possible relationship between nonlinear
elastic lattices (Discrete Mechanics) and nonlocal nonlinear elas-
ticity (Nonlocal Continuum Mechanics). A similar axial chain with
damage irreversible constitutive law was examined in [34] where
the localization phenomenon was investigated and related to
nonlocal Continuum Damage Mechanics. The behavior of a non-
linear elastic bar under homogeneous stress state, whose material
has a convex or a nonconvex energy property has been studied by
Ericksen [35]. The latter investigated the stability of the possible
multiple solutions of this system and evocated the possible finite
discontinuous displacement field. This kind of discontinuity may
be related to the concept of cohesive elasticity models based on an
energetically-based displacement discontinuity evolution law.
Cohesive elasticity models have been well developed by Del Piero
and Truskinovsky [36,37], Marigo and Truskinovsky [38] or Char-
lotte et al. [39] based on theoretical and variational arguments.
Gelli and Royer-Carfagni [40] derived zero-length cohesive laws
from a one dimensional lattice models. However, these cohesive
models mainly used some zero-length discontinuous displace-
ment field. In the present paper, the continualization procedure
leads to nonlocal elasticity models and a finite length cohesive
model at the border (which is slightly different from the zero-
length cohesive model). The present paper focuses on the non-
linear elastic (reversible) lattice model (different from the damage
one) with both convex and nonconvex associated energy, with
a connection to nonlocal, cohesive and nonlinear elasticity
mechanics.

2. Static of the FPU lattice model

The FPU lattice model, composed of nonlinear elastic springs
connected together, is examined in tension under a distributed
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