
Conduction-electron spin resonance in two-dimensional structures

Victor M. Edelstein
Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow district, Russia

a r t i c l e i n f o

Article history:
Received 13 November 2015
Accepted 15 December 2015
Available online 1 February 2016

Keywords:
Electron spin resonance
Microwave absorption

a b s t r a c t

The influence of the conduction-electron spin magnetization density, induced in a two-dimensional
electron layer by a microwave electromagnetic field, on the reflection and transmission of the field is
considered. Because of the induced magnetization and electric current, both the electric and magnetic
components of the field should have jumps on the layer. A way to match the waves on two sides of the
layer, valid when the quasi-two-dimensional electron gas is in the one-mode state, is proposed. By
following this way, the amplitudes of transmitted and reflected waves as well as the absorption coeffi-
cient are evaluated.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Electron spin resonance has long been used to determine g
factors and the longitudinal and transversal relaxation times T1
and T2 providing information about electron band structure and
allowing us to investigate interactions responsible for spin-flip
transitions [1]. This method has acquired an enhanced actuality
nowadays because a growing interest in the spin dynamics in two-
dimensional (2D) electron systems, which are potentially im-
portant for spintronics applications [2,3]. For a long time it was
thought that the direct observation of the conduction-electron
spin resonance (CESR) in 2D structures is impossible because of
small number of current carriers. A breakthrough in this field is
recent works [4–10] where the CESR in some 2D semiconductor
structures was detected by means of the microwave absorption.
The idealness and hence the conductivity of such structures can be
high so that the field acting on electron spins can differ appreci-
ably from that of incoming wave because of the field of the electric
current excited by the wave. Despite the theory of the spin re-
sonance excitation in bulk conductors is well elaborated (see, e.g.,
Ref. 11 and references therein), an analogous theory for 2D con-
ductors, to the best of the author knowledge, is still lacking. The
purpose of the present note is to fill in this gap.

2. Problem statement and results

A feature of this problem which impedes the immediate

application of standard methods, consists in the following. Let the
quasi-2D layer aligned along an −x y plane is placed at position
z¼0 between two dielectrics with the permittivities ϵ1 ( <z 0) and
ϵ2 ( >z 0), and z-axis points “upward” to the dielectric 2. Within
the frame of classical electrodynamics, properties of a conducting
medium enter the Maxwell equations through the material con-
stitutive relations [12], which in the case under study have the
form

σ χ= ^ = ^ ( )J E M H, , 1

where s and χ are tensors of the electric conductivity and the
magnetic susceptibility, respectively. In the following all quantities
are assumed to have the time dependence ω−e i t . The great differ-
ence between the width of the conducting layer d and the wave-
length λ π= q2 / 0 ( ω=q c/0 ) of microwave radiation urges one to
treat the layer as strictly two-dimensional sheet so that

δ( ) = ( ) ( )t z x y tJ r J; , ;S and δ( ) = ( ) ( )t z x y tM r M; , ;S . Then, from the
Amper low

π∇ × = − ϵ − ( )ω ω ωiq
c

H E J
4

, 20

it follows the usual expression for the jump of the magnetic field
on the sheet

π^ × ( − ) = ( )ω ω ωc
n H H J

4
3S,2 ,1 ,

where = ^n z and ωH ,1 and ωH ,2 are the values of the magnetic field
on the lower and upper sides of the sheet, respectively. Accord-
ingly, from the Faraday low

π∇ × = ( + ) ( )ω ω ωiqE H M4 40
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it follows

π^ × ( − ) = ( )ω ω ω ∥iqn E E M4 , 5S,2 ,1 0 ,

where ω ∥M S, is the parallel component of the 2D magnetization
density. Thus both the jumps of the electric and magnetic com-
ponents of the electromagnetic field on the sheet should be taken
into account. If one tries, as usually, to utilize Eqs. (3) and (5) as
boundary conditions for matching the fields above and below the
sheet, an ambiguity occurs – the jumps make undefined the values
of E and H which should be used in Eq. (1). Thus, the inequality

λ⪡d does not allow one to consider the system as a strictly 2D
sheet from the very beginning. Therefore, we will first consider d
as small but finite quantity, trying to find an additional property of
the 2D conductor, which could lift the ambiguity mentioned, and
take the limit λ →d/ 0 on a later stage.

This additional property, in which the following consideration
depends on, is the assumption that the electron gas is in the one-
mode state, i.e., all electrons occupy only the ground state in the
confinement potential forming the 2D gas. Such a situation is usual
in semiconductor heterostructures and conducting surfaces and
interfaces of oxide insulators. It will be shown below that at the
normal incidence of the wave on the one-mode gas the ‘averaged’

fields = ( + )ω ω ωE E Eav,
1
2 ,1 ,2 and = ( + )ω ω ωH H Hav,

1
2 ,1 ,2 , where ωE ,1,2

( ωH ,1,2) are the limit values of the electric (magnetic) field on the
lower and upper sides of the layer, respectively, should be sub-
stituted into the right-hand sides of Eqs. (3) and (5). Thus, Eqs.
(3) and (5) should take the form

π σ^ × ( − ) = ^(
+

) ( )ω ω
ω ω

c
n H H

E E4
2

, 6,2 ,1
,1 ,2

π χ^ × ( − ) = ^ (
+

) ( )ω ω
ω ωiqn E E

H H
4

2
. 7,2 ,1 0

,1 ,2

The standard method supplemented with this matching condi-
tions becomes well defined and straightforwardly gives rise to the
following results. The amplitudes of reflection Tre and transmission
Ttr have the form

= =T
N
D

T
N
D
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while the absorption coefficient, with the accuracy up to terms
linear in χ, is
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These equations have been written for the fields with the circular
polarization = ( + )+ ie e e1/ 2 x y when = (−) +EE e , = (−) +HH e ,

= (−) +MM e , = (−) +JJ e and the constitutive relations have the form

χ= ω(−)
(+)

(−)M H av with χ χ ω χ ω= ( ) + ( )ω
(+) ixx xy and σ= ω(−)

(+)
(−)J E av with

σ σ ω σ ω= ( ) + ( )ω
(+) ixx xy . Also the following notations have been

used: = ϵn1,2 1,2 is the refraction index, Iχ χ″ =ω ω
(+), σ σ=ω ω

(+),
Rσ σ′ =ω ω

(+), and Iσ σ″ =ω ω
(+). Near the frequency ωres of the CESR one

gets [13] χ χ π ω ω ω≅ ( ) − (ϵ ) ( − + )ω
(+) m N i T/ / /F res0 2 , where

χ μ π= ( )g m/2 /B0
2 is the static susceptibility of 2D degenerate

electron gas and (ϵ )N F is the density of states for a single spin. Eqs.
(8) and (9) show that at σ ≥c/ 1 the effect of the electric current,
induced by microwave field, on effective magnetic field acting on
electron spins can be appreciable. The derivation of Eqs. (8) and (9)
is quite standard and therefore is not given here. The remaining
part of the paper presents the proof of the above matching
conditions.

3. Matching conditions

So we consider the electron gas which occupies the layer
− ≤ ≤d z d/2 /2. Two facts follow from the assumption about the
one-mode state of the gas (see Appendix). The first is that the
coordinate dependence of the 3D density of the current and the
magnetization has the factorized form

ρ ρ( ) = ( ) ( ) ( ) = ( ) ( ) ( )∥ ∥t z t t z tJ r J r M r M r, , , , , , 10S S

where = ( ) = ( )∥x y z zr r, , , , ρ ψ( ) = | ( )|z z0
2, ψ ( )z0 is the wave-func-

tion of the ground state, and JS and MS are the 2D densities. At the
normal incidence of the radiation, JS and MS loose their coordinate
dependence. The second fact is that the constitutive relations (1)
take the form

∫
∫

ω σ ρ ω

ω χ ρ ω

( ) = ( ) ( )

( ) = ( ) ( ) ( )

ω

ω

J z E z

M z H z

, ,

, , 11

S
i ij

z

j

S
i ij

z

j

where ∫ ∫= dz
z

.
Consider first the question about the value of the electric field

which should be used in Ohm's law in the limit λ →d/ 0. As it is
known [and also seen from Eq. (5)], the major reason for a finite
difference between the electric field on the upper and lower sur-
faces of the layer is the magnetization. To make the following
explanation more clear the effect of the external magnetic field is
omitted for a while. Consider a strictly 2D sheet, uniformly filled
with the spin magnetization ρ ζ( ) ω−m i t , ⊥m ez [m does not depend
on ∥r at the normal incidence], which lies inside the layer at ζ=z ,
ζ| | ≤ d/2. By utilizing the fact that the vector-potential created at
the point r by the magnetic dipole μ ( )r0 placed at the point r0 is
given by μ( ) = ( ) × ( − ) | − |A r r r r r r/0 0 0

3 [14], one can show that the
vector-potential created by the magnetization of the sheet is

πρ ζ ζ( ) = ( )( × ) ( − ) ( )ω−t e zA r m e, 2 sign , 12i t
z

so that the vector-potential created by the total magnetization of
the electron layer is given by

∫ ∫π ρ ζ ζ ρ ζ ζ( ) = ( × ) ( ) − ( )
( )

ω
−

⎡
⎣⎢

⎤
⎦⎥z d dA m e2 .
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z
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The corresponding part of the electric field, ω= ( )ω ωi cE A/ , has the
same space dependence. According to Eq. (11), the electric current
induced by this part of the field is defined by the expression
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