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H I G H L I G H T S

� We discuss Coulomb interaction effects on charge propagation along quantum Hall edge channels.
� Various experimental works are connected and analyzed in a unified theoretical framework.
� Low frequency transport is described by a lumped element model.
� High frequency transport is described by edge magnetoplasmon propagation.
� Interchannel magnetoplasmon scattering leads to electron fractionalization and decoherence.
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a b s t r a c t

We study time dependent electronic transport along the chiral edge channels of the quantum Hall re-
gime, focusing on the role of Coulomb interaction. In the low frequency regime, the a.c. conductance can
be derived from a lumped element description of the circuit. At higher frequencies, the propagation
equations of the Coulomb coupled edge channels need to be solved. As a consequence of the interchannel
coupling, a charge pulse emitted in a given channel fractionalized in several pulses. In particular, Cou-
lomb interaction between channels leads to the fractionalization of a charge pulse emitted in a given
channel in several pulses. We finally study how the Coulomb interaction, and in particular the fractio-
nalization process, affects the propagation of a single electron in the circuit. All the above-mentioned
topics are illustrated by experimental realizations.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The theoretical study of the dynamical properties of electronic
transport in mesoscopic conductors has been pioneered by Markus
Büttiker and his collaborators in the 1990s [1–4]. Following the
description of the dc conductance of multichannel mesoscopic
conductors as the coherent scattering of electronic waves [5], they
studied the frequency dependent conductance G ω( ) arising when
the conductor terminals are driven by a time dependent voltage
excitation. The latter case turns out to bring more complexity than
the dc one, in particular as the role of Coulomb interaction is
crucial. In the dc case, the current is expressed as a function of
both the probability to be transmitted from one contact to the
other and the difference between the electrochemical potentials of
the contacts. In most of the cases, the effects of Coulomb inter-
action can be disregarded and remarkably, the conductance can be
expressed as a function of the scattering amplitudes of non-

interacting electronic waves. In the ac case, the time dependent
current resulting from the variation of the electrochemical po-
tential of the contacts gives rise to a time dependent accumulation
of charges in the conductor which in turn leads to the variation of
the electrostatic potential mediated by the long range Coulomb
interaction. It is clear that this contribution to the ac current which
directly stems from Coulomb interaction is crucial. Indeed, if one
simply applied scattering theory as in the dc case, no current
would be predicted to flow between contacts capacitively coupled,
as scattering theory only predicts non-zero conductance between
contacts which are physically connected by some transmission
probability. The method introduced by Büttiker and coworkers in
Refs. [1–4] follows two steps. In the first one, the ac current is
calculated in a scattering formalism assuming a fixed value of the
electrochemical potential of the contacts and of the electrical po-
tential in the conductor. In the second one, the electrical potential
is self-consistently calculated by relating the potential to the
charges accumulated in the conductor using the capacitance ma-
trix. Following these two steps, two time scales naturally appear.
The first one, related to the non-interacting scattering description
is the time of flight of non-interacting electron through the
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conductor of length l, l v/1τ = . The second one is related to the
Coulomb interaction through the conductor capacitance C and the
typical impedance of a mesoscopic sample: hC e/2

2τ = . Combining
these two time scales by v l e hC1/ / /2τ = + , one can define the
important concept of electrochemical capacitance Cμ defined by

C C hv e l1/ 1/ / 2= +μ , where the second term is the quantum capa-
citance of the conductor. The electrochemical capacitance is cen-
tral to describe the effects of interactions in quantum conductors
such as mesoscopic capacitors [1] but also the inductive like [4]
behavior of quantum wires. Another major concept of time de-
pendent transport is the charge relaxation resistance Rq [1] which
together with the electrochemical capacitance defines the time it
takes for charges to relax from the mesoscopic conductor to a
macroscopic reservoir (contact). It differs from the dc resistance
given by the Landauer formula. In particular, for a single mode
quantum coherent conductor, R h e/2q

2= [1,6,7], independently of
the probability for charges to be transmitted from the conductor to
the reservoir. Remarkably, this universal behavior is robust to
strong electron–electron interactions [8–10]. Mesoscopic capaci-
tors and charge relaxation resistance have applications beyond the
obvious understanding of the dynamics of charge transfer in me-
soscopic conductors such as dephasing induced by charge fluc-
tuations [11–13] or the efficiency of mesoscopic detectors [14,15].

The present paper will address more specifically time depen-
dent electronic transport along the chiral edge channels of the
quantum Hall regime. The motivation is twofold. Firstly, chiral
edge channels provide an ideal system to test quantum laws of
electricity beyond the dc limit. The ballistic and one dimensional
nature of propagation, which can be implemented on long dis-
tances, realizes a simple set of interacting single mode quantum
wires. However, one specificity of quantum Hall systems distin-
guishes them from usual wires: chiral propagation is enforced by
the strong magnetic field. This specificity makes chiral edge
channels particularly useful to study quantum coherence effects in
time dependent situations. Indeed, the coherence of electron
beams can be probed in electronic interferometers [16]. When
time-dependent drives are applied, quantum coherent electronics
can be pushed to the single electron scale where one studies the
evolution of a single electron wavefunction in a quantum con-
ductor. These electron quantum optics experiments [17] are the
second motivation of this work. They have been pioneered by
Markus Büttiker as well in many ways: mesoscopic capacitors are
used as single electron emitters [18–20] which statistical proper-
ties can be accessed through the measurement of electronic noise
[21–24] or the study of distribution of waiting times between
successive electron emissions [25–27]. Next, the coherence prop-
erties of single electron states [28,29] can be probed in the elec-
tronic analog of the Hanbury–Brown and Twiss [30] or Hong–Ou–
Mandel geometry [31] following a proposal by M. Büttiker and his
collaborators [32] and paving the way for the coherent manip-
ulations of a few charge quanta in quantum conductors based on
multiparticle interference effects [33–35]. Remarkably, these ex-
periments [36] have been so far well accounted for by the time
dependent Floquet scattering theory [37,38] of the mesoscopic
capacitor which builds on the generic scattering theory of time
dependently driven mesoscopic conductors discussed above in the
introduction.

While the study of single electron coherence is a strong moti-
vation of the work presented in this paper, quantum coherence
effects on time dependent transport will not be directly addressed.
However, the purpose of the manuscript is to discuss the role of
Coulomb interaction in charge propagation in quantum Hall sys-
tems and to connect it to the issue of single electron coherence.
This question naturally arises as, on one hand, understanding and
manipulating single electron coherence rely on a single-particle
picture where interactions are disregarded. On the other hand, as

mentioned above, Coulomb interaction plays a prominent role in
time dependent charge propagation.

The paper will first review the lumped element description of
Hall conductors at high frequency based on the calculation of the
circuit emittance introduced in Ref. [39]. In particular the role of
the electrochemical capacitance in the ac properties of Hall con-
ductors will be extensively discussed. At higher frequency the
lumped element description of the circuit breaks down and pro-
pagation effects need to be taken into account. The ac conductance
then stems from the propagation of edge magnetoplasmons. The
role of Coulomb interaction between edge channels will then be
discussed as the coupling leads to the emergence of new propa-
gation eigenmodes responsible for the fractionalization of the
charge propagating in a given channel. Finally, fractionalization
will be discussed at the single electron level, addressing the
question of the death of the elementary quasiparticle caused by
the Coulomb interaction. All the above-mentioned topics will be
illustrated with various experimental realizations (with an em-
phasis put on our own). We would like to emphasize that the data
presented are extracted from already published works. The pur-
pose of this manuscript is to connect together various experi-
mental approaches and discuss them in a unified theoretical fra-
mework inspired by the seminal works of Markus Büttiker and his
collaborators.

2. Emittance of a Hall bar

We consider a generic quantum Hall circuit schematically re-
presented in Fig. 1. Electronic transport occurs along the quantum
Hall edge channels [40–42] located at the edges of the sample, the
number of flowing channels at each edge being fixed by the
number of occupied spin polarized Landau levels (the filling factor
N). The metal-like edge channels are separated by dielectric re-
gions [43]. They are electrically connected to ohmic contacts acting
as electronic reservoirs and imposing the electrochemical poten-
tial Vα of the channels emerging from contact α. They are in ca-
pacitive influence with each other and with nearby metallic gates.
In a time dependent situation, the electrochemical potential V t( )β
of the reservoirs or gates is subject to a periodic modulation:
V t V e i t( ) =α α

ω− . We are interested in the time dependent current
response I t( )α flowing from contact α, defining the multiterminal
ac conductance:

I G V
1

∑ ω= ( )
( )

α
β

αβ β

For low enough drive frequency, G ω( )αβ can be expanded at first
order in ω, providing the first correction to the well known dc-
conductance, see Eq. (2), and defining the emittance Eαβ as done by
Christen and Büttiker in Ref. [39].

G G i E 2
dcω ω( ) = − ( )αβ αβ αβ

( )
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Fig. 1. Schematics of a generic Hall bar sample. Ohmic contacts and metallic gates
are driven by time dependent electrochemical potentials Vα .

G. Fève et al. / Physica E 76 (2016) 12–27 13



Download	English	Version:

https://daneshyari.com/en/article/1543815

Download	Persian	Version:

https://daneshyari.com/article/1543815

Daneshyari.com

https://daneshyari.com/en/article/1543815
https://daneshyari.com/article/1543815
https://daneshyari.com/

