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H I G H L I G H T S

� Analyzing vibrations of FG nanoplates with different edge conditions on elastic foundation.
� Development of a size-dependent plate model based on a 3D nonlocal theory of elasticity.
� Simultaneous discretization of governing equations in all three coordinate directions via GDQ.
� Exploring the influence of various model parameters on natural frequency of nanoplate.
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a b s t r a c t

In the present work, a three-dimensional (3D) elastic plate model capturing the small scale effects is
developed for the free vibration of functionally graded (FG) nanoplates resting on elastic foundations.
The theoretical model is formulated employing the nonlocal differential constitutive relations of Eringen
in conjunction with the 3D equations of motion of elasticity.The material properties are assumed to vary
continuously along the thickness of the nanoplate in accordance with the power law formulation.
Through extending the generalized differential quadrature (GDQ) method to the three-dimensional case,
the governing equations are simultaneously discretized in every three coordinate directions and are then
recast to the standard form of an eigen value problem. Solving the acquired problem, the natural fre-
quencies of the nanoplates with different boundary conditions are calculated. The convergence behavior
of the numerical results is checked out and comparison studies are conducted to make sure of the ac-
curacy and reliability of the present model. Finally, the dependence of the vibration behavior of the
nanoplate on edge conditions, elastic coefficients of the foundation, scale coefficient, mode number,
material and geometric parameters are discussed.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, nanostructured elements such as carbon na-
notubes, graphene sheets or nanoplates, nanobeams and nano-
membranes have attracted a lot of attention from the research
community. The reason behind such an interest is their superb
mechanical and electronic properties which have then brought
about their wide applicability in many emerging fields of nano-
technology [1–7]. Because of the increasingly applicability of the
nanostructures in nanotechnology, fundamental knowledge of the
mechanical behavior of them is desperately required.

When the dimensions of a nanostructure tend to very small
scale, the size effect becomes pivotal. This is because that the

structure at micron or sub-micron scales possesses discrete nature
making the system become comparable to the interatomic or in-
termolecular spacing of that system [8]. Hence, the long range
interatomic cohesive forces i.e., the small scale influences will af-
fect the static and dynamic responses of the nanostructures and
so, they must be regarded in the design of the structures at na-
noscale. One of the most powerful tools which has provided va-
luable insights into various aspects of nanomaterials is the ato-
mistic methods like molecular dynamic (MD) simulations. How-
ever, they require huge computational capacities to achieve ac-
curate solution of the large-sized nanostructures [9]. In the pre-
sence of shortcomings of the atomic approaches, the attention is
focused on the continuum mechanics models. The conventional
continuum models lack the inclusion of small scale effects due
to the neglect of the material microstructure at small size. On
the path to the amendment of the classical continuum models,
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Eringen took a major step forward by proposing the nonlocal
continuum theory [10,11]. This theory introduces atomic length
scales directly into the constitutive relations as a material para-
meter. Ever since, researchers adopted the nonlocal continuum
mechanics for bending, buckling and vibration analyses of the
nanostructures [12–33].

Nanoplates are two-dimensional (2D) nanoscale structures
possessing the brilliant physical and chemical properties and so,
high potential applications in nano/micro electromechanical sys-
tems (NEMS/MEMS). Vibration behavior of these nanostructures
needs to be well-known for the proper design of the nanodevices
in NEMS/MEMS. In the open literature, different nonlocal plate
models have been developed for the vibration analysis of the na-
noplates [8,15–17,20,23,25,27,29,32–34]. Aghababaei and Reddy
[16] reformulated the third-order shear deformation plate theory
(TSDT) using the nonlocal elasticity theory of Eringen and pre-
sented the analytical solutions of bending and free vibration of a
simply supported plate. Ansari et al. [20] developed a nonlocal
plate model for free vibrations of single-layered graphene sheets.
Murmu and Adhikari [23] employed the nonlocal theory of elas-
ticity to study the vibration behavior of bonded double-nanoplate-
systems. Malekzadeh and Shojaei [29] applied a two-variable
refined plate theory including the small scale effects to the free
vibration of the nanoplates. Ansari et al. [32] developed a nonlocal
plate theory incorporating the interatomic potentials and pre-
dicted the biaxial buckling and vibration behavior of graphene.
Using nonlocal theory, Hosseini-Hashemi and his co-workers [33]
derived an exact solution for free vibration of FG circular/annular
nanoplates based on the first order shear deformation plate theory
(FSDT). Recently, Chakraverty and Behera [8] studied the vibration
of isotropic rectangular nanoplates using nonlocal elasticity theory
and classical plate theory (CPT).

In all the aforementioned works, the one or two-dimensional
theories have been used to establish the size-dependent plate
model. In the open literature, very few works exist on the three-
dimensional modeling of the nanoscale plates. In this respect,
Alibeigloo [35,36] analyzed the 3D free vibration of one- and
multi-layered rectangular graphene sheets by using the theory of
elasticity and state space approach. Alibeigloo and Pasha Zanoosi
[37] analytically studied the bending of a simply supported rec-
tangular nanoplate on the basis of the nonlocal continuum me-
chanics and the 3D theory of elasticity. On the other hands, the
research works on the three-dimensional (3D) analyses of nano-
plates are restricted to the all or two edges simply supported
plates with no elastic foundations. Elastic foundations can be
considered on the nanoplate to model the interaction between the
elastic media and the plates in different engineering problems.
Prompted by these voids, in this paper, an attempt is made to
study the three-dimensional free vibration of FG nanoplates with
arbitrary conditions resting on two-parameter elastic foundations.
To this, the nonlocal constitutive equations of Eringen are in-
corporated into the three-dimensional equations of motion. To
solve the problem, the GDQ method is used in all the coordinate
directions enabling one to impose the top and bottom surface
boundary conditions i.e., the foundation effects as well as any ar-
bitrary condition at the other edges of the nanoplate. Some nu-
merical results are presented and compared with the ones existing
in the literature to validate the accuracy and convergence of the
current approach. Afterward, a detailed parametric study is done
to delineate the effects of boundary conditions and various model
parameters on the natural frequencies of the FG nanoplates.

2. Nonlocal 3D elastic plate model for FG nanoplates

A FG nanoplate of length a, width b and thickness h supporting
on Winkler–Pasternak elastic foundations at its bottom surface, as

shown in Fig. 1, is considered. A Cartesian coordinate system lo-
cated at the lowplane of the plate is used and the Pasternak model
is employed to represent the reaction of the elastic foundation to
the plate.

2.1. Material properties of the FG nanoplate

The bottom surface z 0( = ) and the top surface z h( = ) of the
plate are taken to be rich-metal and rich-ceramic, respectively. In
the current study, the material properties of FGM are considered
to be graded in the thickness direction and follow a power func-
tion of a spatial variable. Accordingly, the volume fractions of
ceramic V c and of metal Vm are stated in the following form:
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where k denotes the volume fraction or material gradient index.
Let Cij and ρ be the material elastic coefficients and the mass
density of the plate, respectively. Based on the rule of mixtures,
the general form of these parameters is given by
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From Eq. (1), in the case of k¼0, the plate becomes fully
ceramic and when k → ∞, the plate reduces to a fully metal one.
Also, the Poisson's ratio ν is considered to be constant.

2.2. Review of the nonlocal theory

The small-scale effects are taken into account by the nonlocal
elasticity theory. The notion of this theory is that the stress at a
point in an elastic continuum is dependent on the strain at all the
points of the domain [10,11], whereas in the classical models the
stress depends only on the strain of the same point. The simplified
differential form of the nonlocal constitutive equation proposed by
Eringen for a Hooken solid is expressed as [17]

t1 3
2( )μ σ− ∇ = ( )

where e a0
2μ=( ^) represents the nonlocal parameter or characteristic

length leading to the inclusion of the size effects with e0 as a
constant appropriate to each material and â as the internal char-
acteristic length (e.g., lattice parameter, C–C bond length and
granular distance). 2∇ is the Laplacian operator given by
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. Also, t is the macroscopic stress tensor at a

point which is related to strain by generalized Hooke's law as
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Fig. 1. A schematic of a FG nanoplate resting on elastic foundation with geometric
parameters and coordinate systems.
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