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H I G H L I G H T S

� Quantum well DOS is not a sharp steplike function.
� An accurately JDOS expression for direct transitions is proposed.
� Direct optical transitions are described by considering three spatial dimensions.
� In low dimensional semiconductors, DOS is calculated by convolution operation.
� Quantum well and superlattice absorption coefficients are accurately calculated.
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a b s t r a c t

We present a different approach to evaluate density of states for quasi-bidimensional systems, which
bonds density of states in the confinement direction with in-plane 2D density of states. Applying the
convolution operation, we propose an accurately mathematical expression that combines directly the
valence band and conduction band density of states functions to generate a joint density of states for
direct transitions. When considering low dimensional semiconductors, another expression is found
which shows that the density of states for electrons (holes) can be calculated by convolution operations
between the confinement direction and in-plane electron (hole) density of states. Using both expres-
sions, we have calculated the quantum well and superlattice absorption coefficient, resulting in positive
alignment with experimental data. A more complete description of physical absorption is achieved with
this new approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The optical absorption spectrum is a key requirement for many
of the optoelectronic devices. The optical response of a semi-
conductor is described in terms of the spectral dependence of the
optical absorption coefficient, α ω(ℏ ). The absorption process in
direct gap semiconductors and therefore α ω(ℏ ), can be expressed
as a function of the joint density of states (JDOS). The JDOS func-
tion provides a measure of the number of allowed optical transi-
tions between the occupied valence band electronic states and the
unoccupied conduction band electronic states separated by pho-
ton energy ωℏ .

Several attempts, relating the valence band and conduction
band density of states (DOS) functions to JDOS have been reported
in the literature [1–4]. However, all attempts were confined to

amorphous semiconductors where empirical expressions and
simplified JDOS expressions were obtained. Moreover, to evaluate
interband absorption coefficient in low dimensional semi-
conductors, quantum well and superlattice, JDOS has always been
calculated through its in-plane component [5–7]. Besides, to de-
scribe excitonic absorption, it is generally assumed that each en-
ergy transition is broadened in a Lorentzian or Gaussian fashion
with a broadening parameter. This approach disregards the con-
tribution to JDOS of the dispersion relation between energy and
the magnitude of its wave vector in the confinement direction.

In this study, we present for the first time a mathematical ex-
pression that links directly the valence band and conduction band
density of states functions to a JDOS for direct transitions, which
was proved in GaAs alloys including low dimensional systems like
quantum wells and superlattices. Such expression is achieved by
applying the convolution operation properties. A convolution is an
operator which expresses the amount of overlap of one function as
it is shifted over another function. It therefore blends one function
with another.

In low dimensional semiconductors, we present a different
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approach to evaluate DOS for quasi-bidimensional systems, which
bonds density of states in the confinement direction with in-plane
2D density of states. With this approach a mathematical expres-
sion was found which shows that the density of states for elec-
trons (holes) can be calculated by the convolution operations on
two functions: the confinement direction and in-plane electron
(hole) DOS. We have accurately calculated the absorption coeffi-
cient for quantum wells and superlattices based on GaAs alloys,
showing good agreement with experimental data.

2. Theory

Our research is focused on direct band semiconductors, where
the absorption coefficient is given by [7]
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where nr is the refractive index of the well material, m0 is the free
electron mass, q is the electron charge, c is the speed of light and Ω
is the sample “volume” defined by Bastard [7]. The first term in-
side the element a pif

^⋅→ represents the polarization unit vector, â,

while the second term represents the momentum matrix element,
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In order to simplify Eq. (2), we restrict ourselves to a filled
bottom band and an empty excited band. This is a good approx-
imation as long as the separation of the two bands is greater than
kT . Under this assumption f 1i iε( ) ≈ and f 0f fε( ) ≈ , then
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The JDOS function, Jif ξ( ), is conveniently rewritten, using Dirac
delta properties, as:
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where the dispersion relations are given in the form
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The JDOS function is related with the valence band and

conduction band density of states (DOS) which are linked with
optical transitions. Our next goal is to redefine JDOS expression
(Eq. (4)) as a straightforward dependence of DOS functions. For
that, Fourier transform, with its linearity property, is applied to Eq.
(4). Then,
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where the factor 2 has accounted for the spin degeneracy of each
energy state and ς corresponds to the domain of the Fourier
transform. Here, we have assumed that both functions,

kfδ ξ ε( − (
→

)) and kiδ ξ ε( − | (
→

)|), are Lebesgue integrable. After al-
gebraic operations ( A k B k A k B ki i i i j i j ijδ∑ ( ) ( ) = ∑ ∑ ( ) ( ) , A and B ar-
bitrary functions) and using properties of the Fourier Transform
the Eq. (6) transforms into:
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where
k k1 2

δ→ → assigns the conservation of the wave vector in the

direct optical transitions and D f
e ξ( ) and Di

h ξ( ) denote the density of
states for electrons and holes in the f and i bands.

In order to reach our goal, that is, to define JDOS as a
straightforward dependence of DOS functions, the convolution
theorem is applied to Eq. (7), then
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where * denotes the convolution operation. The normalization
factor β is introduced because convolution operator leads to
overestimated optical states number. Mathematical convolution
involves multiplication between the linked states in valence (oc-
cupied states) and conduction bands (final empty states) and
therefore it disregards that each optical state is related with an
electron–hole pair generation. Such as, for the same k value, only
two optical transitions are possible when there are two occupied
states in the valence band and two empty states in the conduction
band. Instead, the discrete convolution operation multiplies states
in both bands, resulting in four possible optical transitions for the
same k value. Then, only a fraction of the possible calculated op-
tical states, represented by the β factor, are optical states due to
real electronic transitions.

Then, the number of states, which can be optically linked, de-
pends on either the available electronic states in the valence band
or the final states in the conduction band for accommodating the
excited electrons, whichever is the smaller [1]. The β factor is
evaluated under the assumption that, in the first Brillouin zone (B.
Z.), the number of optical states is equal to the number of linked
states in each band. That is, the JDOS must be normalized to the
number of linked states in each band. Then, normalization is given
by
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