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H I G H L I G H T S

� Four band Hamiltonian derived from
ordinary 8 band LK-PB Hamiltonian.

� Allows for two orders-of-magnitude
faster calculations.

� Reproduces reasonably well the
quantum efficiency of a quantum dot
solar cell.

� Produces detailed absorption coeffi-
cient information.

� Input for detailed balance analysis of
nanostructured semiconductor devices.

G R A P H I C A L A B S T R A C T

Sub-bandgap absorption calculated with the LKPB (Huu) (thick black line) and contribution of the
transitions from all the bound states in the hh and lh bands to the cb states (including the IB states). In
the legends each curve is labeled with two letters for the initial states and the quantum numbers of the
cb final state.
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a b s t r a c t

The 8-dimensional Luttinger–Kohn–Pikus–Bir Hamiltonian matrix may be made up of four 4-dimen-
sional blocks. A 4-band Hamiltonian is presented, obtained from making the non-diagonal blocks zero.
The parameters of the new Hamiltonian are adjusted to fit the calculated effective masses and strained
QD bandgap with the measured ones. The 4-dimensional Hamiltonian thus obtained agrees well with
measured quantum efficiency of a quantum dot intermediate band solar cell and the full absorption
spectrum can be calculated in about two hours using Mathematica© and a notebook. This is a hundred
times faster than with the commonly-used 8-band Hamiltonian and is considered suitable for helping
design engineers in the development of nanostructured solar cells.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The use of an intermediate band (IB), that is, a band within the
energy gap of a semiconductor, can raise the detailed balance

efficiency limit [1] of a solar cell from 41% to 63% [2]. This IB serves
as a stepping stone permitting two low-energy photons to gen-
erate an electron-hole pair in the valence (VB) and conduction (CB)
bands of the semiconductor. The voltage may be maintained ap-
proximately if the IB has a quasi Fermi level (or electrochemical
potential) different from that of the CB and the VB. Thus, a higher
efficiency may be achieved.

One way of producing an IB is by forming quantum dots (QDs)
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in a host semiconductor, [3] e.g. QDs of InAs in a GaAs host ma-
terial. The InAs QDs produce potential wells in the GaAs CB; the
wells confine the electrons with energies which are within the
GaAs bandgap; these energy levels may act as an IB. Other material
combinations may also behave like the InAs/GaAs.

Despite the concept’s promise, only on very seldom occasions
have efficiencies greater than the cell without QDs been achieved
[4] and even then, merely marginally. The main reason is the weak
absorption of the photons by the QDs. This absorption can be
modeled using ab initio[5] or k .p [6] calculations. In both cases the
calculation resources are huge. The so called Empiric k .p (EKP)
Hamiltonian has been developed [7,8] to permit a much faster
calculation, feasible on a laptop. This may greatly aid the device
scientist in obtaining feedback from calculations in the task of
improving IB solar cells. It is based on building a Hamiltonian
whose eigenvalues are the experimental E(k) dispersion functions.

However, the well-established method for studying the quan-
tum characteristics of the nanostructure materials with a zinc-
blende structure (those currently providing the greatest effi-
ciency), including the absorption coefficients, is the use of the
8-band Luttinger Kohn (LK) [9,10] Hamiltonian modified by Pikus
and Bir (PB) [11,12] to account for the strain in the lattice. This is a
variety of the k .p methods introduced by Dresselhaus, Kip and
Kittel [13] and extensively developed by Kane [14,15]. It has been
found [16] that the LKPB Hamiltonian is about 100 times more
time consuming than the EKP Hamiltonian for typical problem
sizes and parameters

The most important reason for this time-consuming feature is
that the LKPB Hamiltonian uses eight bands in the problems as-
sociated with photon absorption for solar cells in zincblende
semiconductors. In this article we propose a four-band Hamilto-
nian derived from the LKPB one and we will see that the time-
consumption is close to that of the EKP Hamiltonian and therefore
almost 100 times faster than the 8-band LKPB Hamiltonian.

Among the approximations that we adopt for simplicity is the
QD shape, which is considered a squat parallelepiped or box in-
stead of the squat truncated quadrangular pyramid that dictates
the theory [17]. Other authors have used different shapes such as
full pyramids, [18,19] lenses [5] or, as we do, parallelepipeds [7,20–
22].

The other approximation is the widely used concept of constant
band offset, which considers the confining potential introduced by
the QD as constant in all its volume, and zero outside it. We will
describe the theoretical implications of this approximation.

Besides this Introduction, Section 2 contains the theoretical
background where the basic aspects of the LKPB Hamiltonian are
explained, in a big extent with the purpose of fixing the paper’s
nomenclature; it also explains the strain model that produces
constant offsets and which is used in this paper for simplicity.
Section 3 introduces the concepts in which the 4-band Hamilto-
nian is based. Section 4 presents results of this Hamiltonian con-
cerning the energy spectrum, eigenstates and absorption coeffi-
cients, always in comparison with the EKP Hamiltonian and the
8-band LKPB Hamiltonian; the reasonable agreement achieved
with the measured data constitute the main justification of this
method. Section 5 comprises an estimate of the calculation time of
the 4-band Hamiltonian as compared to that of the 8 band. Finally
a conclusions Section 6 is added. The paper also contains an Ap-
pendix A in which the formulas for calculating the LKPB Ha-
miltonian are described. An on-line Supplementary data file ac-
companies the paper and includes Section 1, on the choice of
parameters, Section 2, on the determination of the strain function,
Section 3, on the strained material fitting of the effective masses
and finally, Section 4 in which some of the properties of the
Fourier transforms are set out.

2. Theoretical background

k .p methods are based on developing a one-electron Ha-
miltonian into an orthonormal basis |0,v,k〉¼ |0,v 〉exp(ik . r)/√Ω
where |0,v 〉 is a the Γ-point Bloch function (GBF), which has the
periodicity of the lattice, v is the band index, k is an arbitrary
wavevector of the first Brillouin zone and Ω is the volume of
calculation (in this paper, a cube of 60�60�60 nm3), which must
be large with respect to the nanostructure studied here (a box of
16�16�6 nm3). The 0 index refers to the Γ point (k¼0). We call
this basis the standard basis. This standard basis is usually limited
to a small number, nB, of bands of interest. The matrix elements
relating basis vectors of different k are automatically zero, so that
the Hamiltonian is represented as a matrix of dimension nB whose
elements are functions of k. The matrix usually undergoes the
process known as renormalization [23] to account for the ne-
glected bands.

For zincblende semiconductors, it is very common to use the
conduction band (cb), and three valence bands (VBs): the heavy
hole (hh) the light hole (lh) and the spilt off (so) bands. Dis-
regarding the spin for the moment, the zincblende lattice belongs
to the Td symmetry group. The cb GBF is often called |S〉 and has
spherical symmetry (it is an s-function). At k¼0, the three VBs
degenerate and the eigenfunctions are linear combinations of
three GBFs called |X〉, |Y〉 and |Z〉 with the symmetry of x, y and z
(see, e.g. Datta [23]) respectively (they are p-functions). However
each of these functions may be considered with spin up or down
and denoted as |S↑〉… |Y↓〉 etc.

In the EKP Hamiltonian we neglect the spin and use |S〉, |X〉, |Y〉
and |Z〉 to form the standard basis. This leads to a 4-band Ha-
miltonian. Furthermore, we use a simple Hamiltonian (H0) that
neglects the important spin–orbit coupling and any strain effect.
The eigenvalues of a k .p Hamiltonian are the E(k) dispersion
functions, whose details can be seen in e.g., Datta [23]. These
dispersion functions are replaced in the EKP Hamiltonian by
parabolic experimental ones, characterized by the band edges and
effective masses, but the eigenvectors of (H0) are retained. See
[8,20] for details.

In contrast, the spin is taken into account in the LK Hamiltonian
and when the origin of energy is set at the VB top, eigenvalues are
Eg, Eg, 0, 0, 0, 0, �Δ, �Δ, where Eg and �Δ are experimental data
characteristic of the material. The eigenvectors are linear combi-
nations of the states |S↑〉… |Y↓〉 etc. and in this paper they are la-
beled as cb + , hh + , lh + , so + , cb − , hh − , lh − , so − .
For details see reference [23].

As the number of eigenvalues is 8, the LK Hamiltonian is re-
presented by an 8-dimension (8D) matrix. If the eigenvectors are
ordered as indicated above, the 8D matrix may be divided into
four blocks [19].

⎛
⎝⎜

⎞
⎠⎟H

H H
H H 1

uu ul

lu ll
( ) =

( ) ( )
( ) ( ) ( )

The interesting aspect of this block separation is that is
H Hlu ul( ) = ( )+ (hermitical conjugate) and H Hll uu( ) = ( * ) (complex con-
jugate); therefore, only two of the four matrices have to be
determined.

Each one of the block matrices may be considered the sum of a
kinetic matrix (the LK part), which applies to non-strained mate-
rials, and a strained material matrix (the PB part). Auxiliary
functions are defined to write the matrix elements, and are pre-
sented in the Appendix A. For different materials they depend of a
set of parameters that can be found in the literature [24].

All the LK matrix elements are functions of k; the PB matrix
elements depend on elements of the strain tensor. The strain
tensor elements are multiplied by material-dependant factors
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