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H I G H L I G H T S

� Optical properties of a quantum dot
system are studied.

� The rectification coefficient, second
and third harmonic generations is
studied.

� The peak positions in optical prop-
erties change with quantum size.

G R A P H I C A L A B S T R A C T

We apply finite element method (FEM) and Arnoldi algorithm to obtain energy eigenvalues and ei-
genfuctions of a semispherical quantum dot located at the center of a cubic box. Then, the compact-
density matrix approach and an iterative method are used to find the optical rectification (OR) coeffi-
cient, second harmonic generation (SHG) and third harmonic generation (THG).
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a b s t r a c t

In the present paper, we first apply finite element method (FEM) and Arnoldi algorithm to obtain energy
eigenvalues and eigenfuctions of a semispherical quantum dot located at the center of a cubic box. Then,
the compact-density matrix approach and an iterative method are used to find the optical rectification
(OR) coefficient, second harmonic generation (SHG) and third harmonic generation (THG). Numerical
calculations are performed for the typical GaAs/Ga Al Asx x1− system. It is found that OR coefficient has a
red-shift when the semispherical radius R becomes larger. Raising R and potential height V0, the mag-
nitude of OR coefficient, SHG and THG are increased. Moreover, the position of resonant peaks of OR
coefficient, SHG and THG are affected by the semispherical radius and potential height.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, quantum dots (QDs) have been re-
ceived considerable attention by researchers [1–3]. Quantum dots
are semiconductor nanostructures with vast applications across

many industries. Modern nanotechnology has allowed scientists to
fabricate quantum dots with various geometrical shapes such as
spherical, cubic, cylindrical, ellipsoidal, cone-like, lens-shape, and
pyramidal shape [4–8]. Quantum dots confine charge carriers in
three dimensions and their properties can be controlled in ex-
periments. Almost, all parameters of QDs such as size, number of
electrons, coupling between dots, as well as external parameters,
like temperature, magnetic and electric field can be varied in a
controlled way.
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During the past few years, the optical properties of quantum
dots, in particular second and third harmonic generations or op-
tical rectification, have attracted lots of attention in theoretical and
applied physics [9–17]. The study of optical properties of QDs is
important and interesting because the optical susceptibility of
these structures is adjustable by changing their size and shape, the
surrounding environment and the external applied fields. Also,
investigation of optical properties of QDs has practical usage in
novel optoelectronic devices such as QD lasers, quantum crypto-
graphy, and QD infrared photodetector.

So far, the optical properties of QDs have became subject of
intensive experimental and theoretical studies in the last decade.
For example, in 1999, Sauvage et al. [18] studied the third-har-
monic generation in InAs/GaAs self-assembled quantum dots in
both theoretical and experimental cases. Several groups have in-
vestigated QDs in a well infrared photodetectors both theoretically
and experimentally [19–21]. Maikhuri et al. [22] have studied the
linear and nonlinear optical properties of ZnO quantum dots em-
bedded in SiO2 matrix. Zeng et al. [23,24] have investigated the
optical susceptibilities in singly charged ZnO colloidal QDs em-
bedded in different dielectric matrices.

It is fully known that the key problem in the study of optical
properties of QDs is to obtain the energy levels of the confined
carriers. Theoretically, in order to obtain the QD energy levels, one
can use the effective mass approximation. In this case, one should
solve the Schrödinger equation by means of a numerical method.
In some cases like simple geometrical shapes, the infinity barrier
approximation is used. However, when the geometrical shape of
QDs is not simple or when QDs embedded in dielectric matrices,
the calculation of energy levels is a nontrivial task which requires
considerable theoretical effort. So far, several theoretical ap-
proaches have been put forth for the calculation of the energy
levels and wave functions of various QDs. For instance, Tablero
[25] has applied a model to determine the electronic structure of
self-assembled quantum arbitrarily shaped dots. Sa'ar et al. [26]
proposed a local-envelope state expansion; Pescetelli et al. [27]
used a tight-binding approach for T- and V-shaped quantum wires
and Ammann et al. [28] used a quasi-factorization scheme. In most
of these investigations the barrier encountered by the confined
electrons at the surface of the dot has been assumed to be infinite.

In the present work, we intend to study the second and third
harmonic generations and optical rectification of a semispherical
quantum dot placed at the center of a cubic quantum box. Due to
the complicated form of the structure, we have applied the finite
element method (FEM) to obtain energy levels and wave functions
numerically. Then, we have used analytical expressions to de-
termine the second and third harmonic generations and optical
rectification.

2. Energy levels and wave functions

In the effective mass approximation, the Hamiltonian of a
charge carrier in a quantum dot is given by (see Fig. 1)
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where V0 is the potential height between GaAs and Al Ga Asx x1− . In
the following, we briefly present our calculation procedure for
finding the energy levels and wave functions of the Hamiltonian of

Eq. (1).
Let Ω1 be a domain occupied by the quantum dot, which is

embedded in a bounded matrix Ω2 of different material (see
Fig. 1). A typical example is a GaAs semispherical quantum dot
embedded in a cubic Al Ga Asx x1− As matrix. One can write the
Schrödinger equation for a charge carrier in the quantum dot as
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where ψ is the wave function and E is the energy. It is clear that
the wave function decays outside the quantum dot very rapidly,
therefore, we can consider homogeneous Dirichlet conditions

0ψ = on the outer boundary of Ω2 and the Ben Daniel–Duke
condition on the interface between Ω1 and Ω2 as
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where n1 and n2 are the outward unit normal on the boundary of
Ω1 andΩ2, respectively. To solve the Schrödinger equation (3), we
apply the finite element method (FEM) [29,30]. To construct an
approximate solution of Eq. (3), we write the wave function ψ as
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where , ,1 2φ φ{ …} is the set of basis function with the following
conditions:
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Inserting Eq. (5) into Eq. (3), multiplying Eq. (3) by φi and in-
tegration by parts, we can obtain the generalized eigenvalue
equation KX¼EMX where K is the stiffness matrix, M is the mass
matrix and X c c c, , , m

T
1 2= [ … ] is the eigenvector corresponding to

the eigenvalue E. The elements of matrices K and M are given by

Fig. 1. Schematic diagram of a semispherical quantum dot embedded in a cubic
quantum box.
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