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H I G H L I G H T S

� Coulomb drag resistivity ∼ −T d2 4.
� Qualitatively and quantitatively different from graphene.
� Analytical results of limited applicability.

a r t i c l e i n f o

Article history:
Received 28 September 2015
Received in revised form
1 November 2015
Accepted 21 November 2015
Available online 9 December 2015

Keywords:
Electron–electron interactions
Coulomb drag
Topological insulator

a b s t r a c t

We study Coulomb drag between the top and bottom surfaces of topological insulator films. We derive a
kinetic equation for the thin-film spin density matrix containing the full spin structure of the two-layer
system, and analyze the electron–electron interaction in detail in order to recover all terms responsible
for Coulomb drag. Focusing on typical topological insulator systems, with a film thicknesses d up to 6 nm,
we obtain numerical and approximate analytical results for the drag resistivity ρD and find that ρD is
proportional to − − −T d n n2 4

a
3/2

p
3/2 at low temperature T and low electron density na,p, with a denoting the

active layer and p the passive layer. In addition, we compare ρD with graphene, identifying qualitative
and quantitative differences, and we discuss the multi-valley case, ultra thin films and electron–hole
layers.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Three-dimensional topological insulators (3DTIs) are a novel
class of bulk insulating materials that possess conducting surface
states with a chiral spin texture [1–9]. Thanks to their topology,
these surface states remain gapless in the presence of time-re-
versal invariant perturbations. Following their initial observation
[10–19], improvements in TI growth have made them suitable for
fundamental research [20–23]. Although the reliable identification
of the surface states in transport, which remains the key to TIs
becoming technologically important, has remained elusive, a
number of experiments have successfully identified surface
transport signatures in isolated samples. These were initially
mostly singled out via quantum oscillations or in gated thin films
[18,19,21,22,20]. Recently, four-point transport measurements on
clean surfaces in an ultrahigh vacuum have reported a surface-
dominated conductivity [24]. A current induced spin polarization
also constitutes a signature of surface transport [25,26] and was
reported in recent experimental studies [27–29]. Magnetic TIs
have also been successfully manufactured [30–32], and the

anomalous [33] and quantum anomalous Hall effects [34,35] have
been detected [36–38]. Hybrid structures such as TI/super-
conductor junctions have been fabricated [39,40], which are ex-
pected to give rise to topological superconductivity and Majorana
fermions [41,42].

Transport experiments and theoretical work have mostly fo-
cused on longitudinal [43–48] and Hall transport properties
[37,49–51], thermoelectric response [52–54] and weak antilocali-
zation [55–58], all essentially single-particle phenomena. The in-
terplay of strong spin–orbit coupling and electron–electron inter-
actions in TIs is at present not completely understood [59–66].

An interaction effect that can be tested experimentally in
transport is Coulomb drag, which is caused by the transfer of
momentum between electrons in different layers due to the in-
terlayer electron–electron scattering. Coulomb drag has been used
for decades as an experimental probe of interactions [67–69], and
has recently attracted considerable attention in massless Dirac
fermion systems such as graphene [70–83]. Our focus in this paper
is on Coulomb drag in TIs with no magnetic impurities. Unlike
graphene, the spin and orbital degrees of freedom are coupled by
the strong spin–orbit interaction, TIs have an odd number of val-
leys on a single surface, and the relative permittivity is different,
while in known band TIs screening is qualitatively and
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quantitatively different, since it does not involve the interplay of
the layer and valley degrees of freedom. All these features impact
the drag current. We introduce a density matrix method to cal-
culate the Coulomb drag current in topological insulator films,
which fully takes into account the spin degree of freedom and
interband coherence. The central result of our work is the drag
resistivity, which analytically takes the form

ρ ħ ζ
π

= − ( ) ( )

( )e
k T

A r n n d
3

16
,

1s
D 2

B
2

2 2
a
3/2

p
3/2 4

where kB is the Boltzmann constant, A is the TI spin–orbit con-
stant, rs is the Wigner–Seitz radius (effective fine structure con-
stant) which represents the ratio of the electrons’ average Cou-
lomb potential and kinetic energies, d is the layer separation and
na,p are the electron densities in the active and passive layers, re-
spectively. For a single-valley system π= ( ϵ ϵ )r e A/ 2s r

2
0 , with ϵr

being the relative permittivity. The intralayer resistivity

ρ = πħ
τe Aka,p

4 2

2 Fa,p a,p
with kFa,p being the Fermi wave vectors.

The outline of this paper is as follows. In Section 2 the inter-
layer electron–electron scattering matrix is given, including the
interlayer screened Coulomb interaction. In Section 3 we derive
the kinetic equation of topological insulators for spin density
matrices of top and bottom surfaces with the full scattering term
in the presence of an arbitrary elastic scattering potential to linear
order in the impurity density. In Section 4, we calculate the ana-
lytical and numerical expressions of drag resistivity. Our findings
are summarized in Section 5, and we also discuss the broader
implications of our results and present a comparison with gra-
phene. Section 6 discusses extensions of our theory to treat the
multi-valley case and ultra-thin films, and briefly touches upon
exciton condensation. Finally, Section 7 contains our conclusions.

2. Electron–electron interaction

The system is described by the many-particle density matrix F̂ ,
which obeys the quantum Liouville equation [84]

ħ
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In a two-layer system the indices α ≡ ks lk represent the wave
vector, band, and layer indices respectively. The band index

= ±sk with þ representing the conduction band and �the va-
lence band, while the layer index = ( )l a, p with ‘a’ the active layer
and ‘p’ the passive layer. The two-particle matrix element αβγδV ee in a
basis spanned by a generic set of wave functions ϕ{ ( )}α r is given by

∫ ∫ ϕ ϕ ϕ ϕ= ′ ( ) ( ′) ( ) ( ′) ( )αβγδ α β δ γ
⁎ ⁎
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is the unscreened Coulomb interaction.

The one-particle reduced density matrix is the trace

ρ = ( ^) ≡ 〈 〉 ≡ 〈^〉 ( )ξη η ξ η ξ
† †c c F c c Ftr , 5e1

which satisfies [59]
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where the many-electron averages such as 〈[ ^ ]〉η ξ
†V c c,ee are factor-

ized as

〈 〉 = 〈 〉〈 〉 − 〈 〉〈 〉 + ( )α β γ δ α δ β γ α γ β δ αβγδ
† † † † † †c c c c c c c c c c c c G . 7

in which we introduce the αβγδG as the matrix elements of the two-

particle correlation operator Ĝ. αβγδG give rise to the electron–
electron scattering term in the kinetic equation [84]. The first two
terms on the right side of Eq. (7) which represent the Hartree–
Fock mean-field part of the electron–electron interactions have
been investigated in Ref. [59]. In Ref. [59] it was demonstrated that
the electrical current and the nonequilibrium spin polarization
undergo a small renormalization due to the mean-field part of
electron–electron interactions and are consequently slightly re-
duced as compared with their non-interacting values. We are not
including this weak renormalization here, so the right-hand side

of Eq. (6) only gives the electron–electron scattering term ρ^ (^| )J tee
which has two contributions, representing intralayer and inter-
layer electron–electron scattering. Moreover, since the intralayer
electron–electron scattering does not contribute to the drag cur-
rent, we concentrate on the interlayer electron–electron scatter-
ing, for which the scattering term is denoted by ρ(^| )J tInter . We use
below the basis of the eigenstate problem and account for only
diagonal part of the density matrix ρ( ) = 〈 | (^| ) | 〉k kJ f J tk
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where = ϵ ϵvq
e
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,  is the identity matrix, L2 the area of the 2D

system, ^ ( )S t t, 1 the time evolution operator and {{ ^}} ≡ ^ − ^A A Atr
[84]. The momentum transfer = = − = ′ − ′q q k k k k1 1 1 . Following a
series of simplifications, the interlayer Coulomb interaction
eventually takes the form | − |

( )vk k
pa

1
. Without screening =| − |

( ) −v v ek k q
qdpa

1
.

To account for screening, we employ the standard procedure of
solving the Dyson equation for the two-layer system in the ran-
dom phase approximation (RPA) discussed in Ref. [68]. In this
approach, | − |

( )vk k
pa

1
in Eq. (8) becomes the dynamically screened in-

terlayer Coulomb interaction
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The dielectric function of the coupled layer system is
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in which the polarization function is obtained by summing the
lowest bubble diagram and takes the form
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