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a b s t r a c t

The transient thermal analysis of a single-layered graphene sheet (SLGS) embedded in viscoelastic
medium is presented by using the nonlocal elasticity theory. The elastic medium, which characterized by
the linear Winkler’s modulus and Pasternak’s (shear) foundation modulus, is changed to a viscoelastic
one by including the viscous damping term. The governing dynamical equation is obtained and solved for
simply-supported SLGSs. Firstly; the effect of the nonlocal parameter is discussed carefully for the vi-
bration and bending problems. Secondly, the effects of other parameter like aspect ratio, thickness-to-
length ratio, Winkler-Pasternak’s foundation, viscous damping coefficient on bending field quantities of
the SLGSs are investigated in detail. The present results are compared with the corresponding available in
the literature. Additional results for thermal local and nonlocal deflections and stresses are presented to
investigate the thermal visco-Pasternak’s parameters for future comparisons.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The nanostructured materials such as single-layered (SL) and
multi-layered (ML) graphene sheets are a relatively new class of
materials and offer a variety of physical properties with many
applications in several fields. Graphene is a new class of two-di-
mensional carbon nanostructure which holds great promise for
the vast applications in many technological fields. The graphene
sheet is a two-dimensional lattice structure and has many unique
properties which cannot be matched by conventional materials.
The GSs are mostly used in polymer composites as embedded
structures to fortify them. Furthermore, the potential applications
of the SLGSs as mass sensors and atomistic dust detectors have
been investigated. Most of the studies on vibration, bending and
buckling of nanoplates are carried out on SLGS and MLGS.

The notions of continuum mechanics have attracted a great
deal of attention of many researchers to treat structures at the
scale of nanometer. The classical continuum mechanics ap-
proaches are widely used but theory cannot predict the size effect.
Successful applications of the classical continuum modeling to the
bending response of nanostructures have been reported by a
number of research workers [1–4]. However, the classical con-
tinuum mechanics is scale independent which makes its

applicability to the small-scale nanomaterials somewhat ques-
tionable. The size effects are recognized to become more pro-
nounced as the dimensions of nanostructures become very small.
It has been suggested that the nonlocal continuum theory pre-
sented by Eringen [5–8] should be integrated in the continuum
models for accurate prediction of nanostructures mechanical be-
haviors [9]. The nonlocal Eringen's theory is based on this as-
sumption that the stress at a material point is considered as a
function of the strain field at all material points in the continuum
body. It is proposed for small scale problems like dislocations and
cracks in materials, where stresses at a reference point are func-
tions of the strains at all points of the body. The theory is found to
be in good agreement with lattice dynamics model in studying
plane waves and the experiment on phonon dispersion.

The extension of continuum mechanics to accommodate the
size dependence of nanomaterials becomes another topic of major
concern. Application of nonlocal continuum mechanics allowing
for the small scale effects to vibration frequency analysis of na-
nomaterials has been also suggested by some other research
workers in the study of nanostructures [10–23]. However, the in-
clusion of the viscous damping effect as a third foundation para-
meter is rare in the literature. Most SLGSs and DLGSs embedded
on visco-Pasternak foundation are presented in the literature to
investigate the nonlocal vibration frequencies [24–29]. In addition,
the inclusion of the thermal field in the problem of GSs embedded
in elastic medium is also discussed. Ansari et al. [30] have studied
the axial buckling characteristics of SWCNTs including thermal
environment effect. Satish et al. [31] have presented the thermal
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vibration analysis of orthotropic nanoplates using two-variable
refined plate theory and nonlocal continuum mechanics for small
scale effects. Liu et al. [32] have studied the thermo-electro-me-
chanical free vibration of piezoelectric nanoplates based the
nonlocal theory and the classical Kirchhoff's theory. Xu et al. [33]
have investigated the nonlinear bending behavior of a bilayer
(double-layered plate) rectangular graphene sheet subjected to a
transverse uniform load in thermal environments. Mohammadi
et al. [34] have studied the buckling behavior of orthotropic SLGSs
in thermal environment by using nonlocal elasticity theory. Nami
et al. [35] have used the nonlocal elasticity theory and third-order
shear deformation theory to investigate the thermal buckling
analysis of functionally graded rectangular nanoplates. Zhang et al.
[36] have investigated the transient analysis of SLGSs by using the
element-free kp-Ritz method.

The transient thermal analysis of a SLGS embedded in a visco-
Pasternak’s (three-parameter) medium is presented to display
various characters. The governing equation is obtained and solved
analytically for a simply-supported SLGS. The effects of different
parameters on the natural vibration frequencies, deflections and
stresses are investigated. Sample results are tabulated and plotted
for sensing the effect of all used parameters and to investigate the
nonlocal and visco-Pasternak’s parameters for future comparisons.

2. Basic equation of single-layered graphene sheet (SLGS)

Let us consider a single-layered graphene sheet (SLGS) of
length l, width b and uniform thickness h as shown in Fig. 1. The
SLGS is made of a homogeneous isotropic and linearly elastic
material with Young’s modulus E , Poisson’s ratio ν, shear modulus
G and material density ρ.

2.1. The visco-Winkler-Pasternak foundations

The two-parameter Pasternak's model is the most natural ex-
tension to the one-parameter Winkler's model. It considers a shear
interaction between the spring elements by connecting the ends of
the springs to a plate of an incompressible shear layer. The present
SLGS is embedded in a homogeneous three-parameter viscoelastic
medium. The foundation model is characterized by the linear
Winkler's modulus K1, the Pasternak's (shear) foundation modulus
K2, and the damping coefficient Ct of the viscoelastic medium.
Taking into account the un-bonded contact between the SLGS and
medium, the interaction follows the three-parameter visco-Pas-
ternak-type foundation model as
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where w is the transverse displacement and ∇2 is the Laplacian
(second-order spatial gradient). Here, we have introduced the
SLGS length l in Eq. (1) for maintaining the dimension of K1 and K2

to be the same. If the foundation is modelled as the visco-Winkler
foundation, the coefficient K2 in Eq. (1) is zero. The viscosity term
may be omitted by setting =C 0t to get the analysis of the SLGS
embedded in pure elastic medium.

2.2. Nonlocal classical plate theory

The most general form of the constitutive relation in nonlocal
elasticity theory involves an integral over the entire region of in-
terest. The integral contains a nonlocal kernel function, which
describes the relative influence of the strains at the various loca-
tions of the body on the stress at the material point under con-
sideration. Specifically, the constitutive equation of nonlocal elas-
ticity for homogenous and isotropic elastic solids read
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where σij is the nonlocal stress tensor, V is the volume occupied by
the elastic body, − ′x x denotes distance in Euclidean space, and
the nonlocal kernel ψ ( − ′ )x x accounts for the effect of the strain
at the point ′x on the stress at the point x in the elastic body.
The parameter ψ is an internal characteristic length (e.g., lattice
parameter, granular distance, length of C–C bonds).

The quantity τ ( ′)xkl denotes the local stress tensor for which the
standard local constitutive equation is adopted, i.e.

( ) ( ) ( )τ λε δ με γδ′ = ′ + ′ − ( )x x x T2 , 3kl mm kl kl kl

where ε ( ′)xkl is the classical local strain tensor at ′x . Here,
∆ = −T T T0 denotes the increment temperature in which T is the
thermodynamical temperature and T0 is the reference tempera-
ture, λ and μ being Lamé’s constants, γ α λ μ α ν= ( + )= ( − )E3 2 / 1 is
the coupling parameter, α represents the coefficient of thermal
expansion for the SLGS.

The small strain-displacement relations are given by the usual
relations
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where ( ′)u xl is the displacement vector at a reference point ′x in
the body. For an appropriate form of the nonlocal kernel [5–8], it
turns out that the nonlocal internal constitutive relation given by
Eq. (1) can be inverted to yield the following pseudo-local
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Fig. 1. A continuum plate model of a single-layered graphene sheet embedded in a viscoelastic medium.
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