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a b s t r a c t

The effect of phonon scattering on electrical conductivity (EC) of 2D electron gas in quantum well (QW)
systems with a complicated potential profile is described. Dependence of QW electrical conductivity on
QW parameters (such as QW width, Fermi level positions etc.) when phonon scattering is employed has
been calculated. NDC in EC when it varies with width of the QW has been found.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Structures with different shape quantum wells (QWs), within
which charge carrier motion is restricted, are widely utilized in
nanoelectronics. Transport phenomena in QWs are substantially
distinguished from those in bulk and possess a series of features.
Among them are negative differential conductivity (NDC), elec-
trical conductivity (EC) oscillations, semimetal–semiconductor
transition and high mobility. These effects are explained by
properties inherit in low-dimensional systems, depend on QW
profile and sizes and scattering mechanisms in low-dimensional
systems. NDC in 2D systems has been attributed to dynamical
localization at the expense of electron Bloch oscillations, presence
of strong electric fields, non monotonic drift mobility, tunneling,
scattering mechanism features in low-dimensional systems,

doping, and also to spatial transport of electrons from QW into
parallel layer conduction [1] and scattering-induced NDC [2]. The
latter exhibits in GaAs QWs at high doping of structures
( − −10 10 M23 24 3) [3]. NDC magnitude is governed by the density of
states and QW shape [4]. NDC in QW is experimentally observed
solely in some special cases [5–7]. Mainly, when investigated QWs,
infinitely deep rectangular (most common), triangle and parabolic,
and also δ- potential QW models are taken. However, the real
potential QW is of more complex shape, neither infinite nor flat.
On the other hand, at present epitaxial growth technique allows
one to fabricate structures with arbitrary QW potential profiles.
From this standpoint, theoretical studies of phenomena in QW
structures with complicated potential profile are of interest.

In the paper we consider 2D electron gas EC in QW with
complicated potential profile. An influence of QW parameters on
EC for phonon scattering is investigated. We obtain that EC is non
monotonic with potential QW width and height, and for acoustic
phonon scattering depending on the relationship between the
Fermi level and QW parameters becomes negative. The oscillation
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period dependent on the charge carrier concentration is
determined.

2. General form for EC in complicated potential profile QW

As mentioned, the chief model of rectangular QW is a crude
approximation: in real structures spatially separated charges cause
an appearance of electrostatic potential, this in turn results in
band edges bending, transforming the rectangular QW into the
parabolic type one [8]. In order to find energy levels for the po-
tential profile having a finite width but no angles, we employ the
function [9]:
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here a is the QW width, U0 is the potential energy minimum. QW
potential (1) is illustrated schematically in the insert in Fig. 1. It
describes wide and narrow QWs, includes rectangular and para-
bolic potentials, its profile depends on the QW width and Fermi
level position.

Solving the Schrödinger equation with potential energy (1)
gives energy spectrum of 2D electron gas:
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2 2 2, m is the electron effective mass and εn acquires

the form:
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here ε π= ℏ ma/80
2 2 2 at =n 0 and =U 00 , n¼0,1,2,… is the quantum

number. Models of rectangular potential and parabolic QWs are
particular cases of energy spectrum (3).

For energy spectrum (3), the density of states of 2 DEG is
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where Θ ε ε( − )n is the Heaviside function.
As seen from formulae (2) and (3), electrons in conduction

band move practically freely in the plane parallel to QW bound-
aries; the transverse electron motion turns to be quantized, but
electrons at these discrete levels retain freedom of motion in two

other directions. To describe such a transport process, the semi-
classical approach is entirely grounded.

In the geometry of the problem,
→

( )E E , 0, 0x , current density is
defined as [10]
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where f0 is the Fermi–Dirac equilibrium distribution function, τ (
→

)k
is the relaxation time.

Thence for EC, we get:
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From (6) passing from summation over kx and ky to integration

in polar coordinates ϕ
→

=⊥ ⊥ ⊥dk k dk d , we find:
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Formulae (7)–(9) are just for any dependence εn on the quan-
tum number n, i.e. for any shape of the QW. To derive an analytical
expression EC for specified QW (3) we need in an explicit re-
laxation time. In view of τ−1∼ ε ε( ) ( )W g , where ε( )W is the scat-
tering probability [10] for an electron–phonon scattering in 2D
systems it can be written [11–12]:
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here ε( )g is given by formula (4), for scattering by acoustic pho-
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χ0 are high-frequency and static dielectric permeability of the
crystal).

Having put (10) and (4) into (7) for EC we receive:
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In the case of a degenerate electron gas from (11) we have σ:
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where ε* = ε
F k T

F
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and the Fermi level εF is [13]
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which is found from the condition

ε ε=F n.
Substituting (13) into (12) and performing summation over n

yields for relative EC:
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Fig. 1. Relative EC σ σ/ 0 vs. the QW parameter εU /0 0 for acoustic phonon scattering.
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