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H I G H L I G H T S

� Free vibration of a MEE microbeam is
investigated.

� The governing equations and
boundary conditions are derived.

� Natural frequencies of the microbe-
am under electric and magnetic po-
tentials are obtained.

� Critical values of electric and mag-
netic potentials that lead to buckling
are obtained.

G R A P H I C A L A B S T R A C T

Based on Euler–Bernoulli beam theory natural frequency and critical potential values of a magneto-
electro-elastic (MEE) microbeam is analytically derived.
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a b s t r a c t

Different types of actuating and sensing mechanisms are used in new micro and nanoscale devices.
Therefore, a new challenge is modeling electromechanical systems that use these mechanisms. In this
paper, free vibration of a magnetoelectroelastic (MEE) microbeam is investigated in order to obtain its
natural frequencies and buckling loads. The beam is simply supported at both ends. External electric and
magnetic potentials are applied to the beam. By using the Hamilton's principle, the governing equations
and boundary conditions are derived based on the Euler–Bernoulli beam theory. The equations are
solved, analytically to obtain the natural frequencies of the MEE microbeam. Furthermore, the effects of
external electric and magnetic potentials on the buckling of the beam are analyzed and the critical values
of the potentials are obtained. Finally, a numerical study is conducted. It is found that the natural fre-
quency can be tuned directly by changing the magnetic and electric potentials. Additionally, a closed
form solution for the normalized natural frequency is derived, and buckling loads are calculated in a
numerical example.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently in the field of materials science, there has been a great
interest in smart materials that have piezoelectric and piezo-
magnetic characteristics. These materials, called magnetoelec-
troelastic (MEE) composites, have the ability of converting energy
from one form (among magnetic, electric and mechanical en-
ergies) to another and vice versa. Furthermore, they present a

magnetoelectric effect that is not observed in single-phase pie-
zoelectric or piezomagnetic materials [1–5]. In more recent stu-
dies, composite forms of these materials were utilized.

Since the 1970s when the first MEE composite consisting of the
piezoelectric and piezomagnetic phase was reported [6] , MEE
composite materials have attracted considerable attention. In the
past 10 years, with the trends toward device miniaturization, the
MEE nanomaterials (e.g., BiFeO3, BiTiO3–CoFe2O4, NiFe2O4-PZT)
and their nanostructures (e.g. nanowires, nanofilms,) became an
active research subject [7–10]. Compared to MEE bulk composite
materials, MEE nanomaterials presented novel electric, magnetic,
mechanical and physical properties. They also had a significant
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magnetoelectric coupling, and a wide range of potential applica-
tions in nanoelectronics, non-volatile memories, NEMS, switchable
photovoltaics, etc. [11–13]. After discovering the characteristics of
these materials, the next step was using them in different
structures.

Among the structures that are made of MEE materials, at first,
much attention has been paid to the structural analysis of the
magnetoelectroelastic plate. Liu and Chang [14] presented a closed
form solution for the vibration problem of a transversely isotropic
MEE plate. Pan [13] presented an exact closed-form solution for
the static deformation of a layered MEE plate based on a new and
simple formalism resembling the Stroh formalism. Using the state-
vector method, Wang et al. [15] obtained an analytical solution for
MEE, simply supported and multilayered rectangular plates in the
form of infinite series. Later, the state-vector approach was pro-
posed by Chen et al. [16] for the analysis of free vibrations of MEE
layered plates. An equivalent single-layer model for the dynamic
analysis of MEE laminated plates was presented by Milazzo [17].
Using the meshless local Petrov–Galerkin (MLPG) method, Sladek
et al. [18] solved the mechanical problem of the MEE plate under a
stationary harmonic load.

More complex models for plates have also been used in pre-
vious research studies. Bhangale and Ganesan [19] investigated
static analysis of a functionally graded (FG) MEE plate by the finite
element method under mechanical and electrical loadings. Wang
et al. [20] analyzed the axisymmetric bending of FG circular MEE
plates of transversely isotropic materials based on the linear three-
dimensional theory of elasticity coupled with magnetic and elec-
tric fields. Wu et al. [21] extended the Pagano method for the three
dimensional plate problem to the analysis of a simply supported,
FG rectangular plate. A nonlinear large-deflection model for MEE
rectangular thin plates was proposed by Xue et al. [22]. Despite of
these research studies on structural analysis of MEE plates, be-
cause of using MEE beams in sensors and actuators etc., structural
analysis of MEE beams in micro and nanoscales is also necessary.

A detailed study on MEE beams is crucial because the first steps
for future analysis of vibrational characteristics and control are
static analysis and also free vibration analysis. MEE beams vibra-
tions have been analyzed in a limited number of research works.
Jiang and Ding [23] derived the governing equations of MEE beams

and studied their free vibrations. Milazzo et al. [24] analyzed the
forced vibrations of MME beams. Ke and Wang [25] used the
nonlocal theory to study the free vibrations of MEE beam. In the
previous research on beam vibrations, there is a lack of analysis on
the critical buckling potentials and instabilities, especially in mi-
crobeams. It is necessary to cover this in an independent work that
can be used in the design process of new MEMS devices.

In this research, free vibration of a MEE microbeam, based on
the magneto-electro-elasticity theory and Euler–Bernoulli beam
theory, is investigated. The in-plane electric and magnetic fields
are ignored for the microbeam. The governing equations of a MEE
microbeam are derived using Hamilton's principle. Finally, as a
numerical study, the critical values of magnetic and electric po-
tentials in buckling are calculated.

2. Modeling and formulation

2.1. Geometry of the beam

An MEE microbeam of length L, width b and thickness h that is
subjected to a distributed load is depicted in Fig. 1(a). In order to

Nomenclature

A cross-sectional area of MEE microbeam
Bi components of magnetic flux
b width of MEE microbeam
Cij elastic stiffness tensor
Di components of electric displacement
Ei components of electric field
eij piezoelectric coefficients
εij components of linear strain
fij piezomagnetic coefficients
ϕ electric potential
gij magnetoelectric coefficients
Hi components of magnetic field
h thickness of MEE microbeam
hij dielectric permittivity constants
I second moment of area for MEE microbeam
L length of MEE microbeam
M internal bending moment
μij magnetic permittivity constants
Ncr fundamental buckling force for a simply supported

MEE microbeam

Ne normal force induced by the external electric potential
Nm normal force induced by the external magnetic

potential
ω normalized natural frequency
ωn natural frequency
Πex virtual work done by the external force
Πk kinetic energy
Πs strain energy
q external transverse force
ρ density
ψ magnetic potential
ψ0 magnetic potential between lower and upper surfaces

of MEE microbeam
sij components of stress
u component of displacement parallel to x direction
v component of displacement parallel to y direction
V0 electric potential between lower and upper surfaces of

MEE microbeam
w component of displacement parallel to z direction
x direction along length of microbeam
z direction along thickness of microbeam

Fig. 1. (a) Schematic of MEE beam and (b) displacement components of the beam
[26].
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