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H I G H L I G H T S

� Periodically driven system can be probed by differential conductances.
� Transport properties and quasi-energy spectrum are indeed related.
� Transport provides an accurate probe of out-of-equilibrium topological edge states.
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a b s t r a c t

We consider the differential conductance of a periodically driven system connected to infinite electrodes.
We focus on the situation where the dissipation occurs predominantly in these electrodes. Using ana-
lytical arguments and a detailed numerical study we relate the differential conductances of such a system
in two and three terminal geometries to the spectrum of quasi-energies of the Floquet operator.
Moreover these differential conductances are found to provide an accurate probe of the existence of gaps
in this quasi-energy spectrum, being quantized when topological edge states occur within these gaps.
Our analysis opens the perspective to describe the intermediate time dynamics of driven mesoscopic
conductors as topological Floquet filters.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the possibility to induce an out-of-equilibrium topo-
logical state of matter through irradiation or a periodic driving has
stimulated numerous works. While initially the external driving
perturbation was used to trigger a phase transition between states
of conventional topological order [1–3], fascinating topological
properties specific to driven out-of-equilibrium states were soon
identified [4–6]. While several proposals to realize and probe
these topological states in various artificial systems have turned
out to be successful [7–14]. Their realization in condensed matter
have proved to be challenging [15,16].

There is a strong analogy between equilibrium topological in-
sulators and topological driven states. Both require the existence
of a gap in the spectrum characterizing their single particle states:
topological insulators are band insulators with a gap in the energy
spectrum of the single particle Hamiltonian while topological

driven states have a gap in the spectrum of the Floquet operator. In
both cases, a nontrivial topology manifests itself through the ap-
pearance within this gap of robust states located at the edge of the
system. However, while in an insulator the gap separates empty
states from occupied states, the thermodynamics of gapped peri-
odically driven states is much less understood. Recent studies have
stressed the differences between the nature of the states reached
at long time in such periodically driven systems and the equili-
brium ground states of insulators [17–20].

Here we follow a different route: we focus on the relation be-
tween the DC transport of a periodically driven system and its
quasi-energy Floquet spectrum in a regime where the times of
flight of electrons through the system are shorter than the char-
acteristic inelastic scattering times, which can be the case in me-
soscopic systems. This provides a way to avoid the issue of long
time dynamics of driven systems, which was raised in recent
studies [19–21]. Technically, this requires that the dominant per-
turbation of the unitary evolution of the driven system is the
presence of the electrodes: dissipation should occur in the leads.
From this point of view, the driven system behaves as a topological
Floquet filter instead of an out-of-equilibrium steady-state analog
of an equilibrium insulating state.
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DC transport is known to be an ideal probe of the existence of
edge states in topological equilibrium phases realized in con-
densed matter, particularly in two dimensions. In a seminal paper
[22] Markus Büttiker demonstrated how the non-local con-
ductances in a Hall bar fully characterize the nature of the quan-
tum Hall effect and the associated chiral edge states. This approach
was recently extended to study the quantum spin Hall effect oc-
curring in HgTe/CdTe quantum wells [23,24]. In this time-reversal
invariant topological phase, the existence of a Kramers pair of
counter-propagating edge states leads to a series of non-local
conductances whose experimental observation clearly identified
this new phase. For topological driven systems, the situation is
more confusing: building on earlier works on the transport
through a topological periodically driven state [25,3], recent stu-
dies have focused on the transport through a one-dimensional
topological superconducting state [26], the effect on transport of
the competition between heating by the drive and the coupling to
the leads [21] or the quantization of conductances of a topological
phase in multi-terminal geometry [27]. It was also proposed to
probe quasienergy spectra (and topological edge states) through
magnetization measurements [28] and tunneling spectroscopy
[29]. However, the relation between transport and the existence of
topological edge states in periodically driven states remains un-
clear, and a summation procedure over different energies in the
lead was proposed to recover a quantized conductance [26,30].
The purpose of our paper is to reconsider the relation between the
(non-local) differential conductances of periodically driven sys-
tems and their Floquet quasi-energy spectrum, allowing for a di-
rect relation between these differential conductances and the to-
pological indices associated with the spectral gaps. In particular
we will establish a protocol in a multi-terminal geometry allowing
for this identification. In this point of view, a topological periodi-
cally driven system is viewed as a topological Floquet filter with
selective edge transport occurring for specific voltage biases be-
tween a lead and the system. These voltage biases lead to a sta-
tionary DC current by counterbalancing the time dependence of
Floquet states.

2. From Floquet theory to scattering theory

2.1. Floquet theory for open systems

We consider a periodically driven quantum system connected
to Nleads equilibrium electrodes through good contacts with
large transmissions. The system is described by a Hamiltonian

H t
sys

Σ^ ( ) − ^ where H t T H t
sys sys^ ( + ) = ^ ( ) with T the period of the

drive, and Σ̂ is a self-energy accounting for the coupling between
the system and its environment (e.g. the leads). We assume in the
following that this self-energy is dominated by the exchange with
the electrons in the leads. When all characteristic times of the
leads are small with respect to the characteristic times of the
system, we can use the so-called wide band approximation [31]
where the self-energy is assumed to be constant in energy:

EΣ Σ^ ( ) ≃ ^. The dynamics of the system is described by the evolu-

tion operator U t t,^ ( ′) which obeys the following equation:
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Of great importance is the Floquet operator which is the evolution

operator after one period U T , 0^ ( ). When diagonalizable, it can be
decomposed on the left eigenstates ϕ〈 ˜ |α and the right eigenstates

ϕ| ˜ 〉α of U T , 0^ ( ):
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that constitute a bi-orthonormal basis of the Hilbert space
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The eigenvalues λα in Eq. (2) are called the Floquet multiplicators
and read
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The coefficient εα is called the quasienergy and γα is its damping
rate whose inverse gives the life-time of the eigenstate. Note that
the quasienergy being a phase, it is defined modulo the driving
frequency T2 /ω π= . Any state at arbitrary time t can then be
constructed from the eigenstates of the Floquet operator. It is
particularly useful to define the left and right Floquet states:
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which are periodic in time, u t u t T| ( )〉 = | ( + )〉α α (same for u t〈 ˜ ( )|α ),
so that they can be expanded in Fourier series
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where the harmonics read
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From Eqs. (3) and (5) the evolution operator can be expanded on
the Floquet states as

U t t u t u t, e .
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This expression can finally be decomposed on the harmonics of
the Floquet states by using Eq. (6)
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In practice, the spectrum of Floquet operator of the semi-in-
finite system can be obtained numerically either by direct a
computation of U T , 0( ) (e.g. as a discretized in time version of the
infinite product) or through its representation in Sambe space
[32].

2.2. Differential conductance

Based on a standard formalism, we can calculate analytically
the differential conductance of the periodically driven system in a
multi-terminal geometry and relate it to the quasienergy spectrum
of the system. We follow the standard Floquet scattering formal-
ism [31,33–35,26,27] to describe the transport properties of this
multiterminal setup in a phase coherent regime. We consider the
rolling average over a period T (all time-averages in the following
are also rolling averages over one driving period) of the current
entering each lead labelled by the index ℓ:

t
T

t J t
1

d . 10t

t T

∫( ) = ′ 〈^ ( ′)〉 ( )ℓ
+

ℓ

where J t〈^ ( ′)〉ℓ is the expectation value of the current entering lead
ℓ at time t′. This average current satisfies a relation [33,31,34]:
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where f E( )ℓ is the Fermi-Dirac distribution of the lead ℓ assumed
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