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An electron gas in a strongly oblated ellipsoidal quantum dot with impenetrable walls in the presence of
external magnetic field is considered. Influence of the walls of the quantum dot is assumed to be so
strong in the direction of the minor axis (the OZ axis) that the Coulomb interaction between electrons in
this direction can be neglected and considered as two-dimensional. On the basis of geometric adiaba-
ticity we show that in the case of a few-particle gas a powerful repulsive potential of the quantum dot
walls has a parabolic form and localizes the gas in the geometric center of the structure. Due to this fact,
conditions occur to implement the generalized Kohn theorem for this system. The parabolic confinement
potential depends on the geometry of the ellipsoid, which allows, together with the magnetic field to
control resonance frequencies of transitions by changing the geometric dimensions of the QD.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Kohn's theorem and its generalization for the case of quantum
nanostructures, is one of the most beautiful quantum-mechanical
effects. It was originally formulated by Walter Kohn in 1961 and
described the specific optical properties of the electron gas in
external magnetic field. Kohn showed that under the influence of
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homogeneous rotating microwave field, cyclotron resonance is not
affected by the interaction among electrons [1].

In 1990, Maksym and Chakraborty published the work in which
the eigenstates of electrons interacting in quantum dots in a
magnetic field are studied. In this pioneering work the authors
elaborated a theory of the electron gas in an external magnetic
field with confining parabolic potential. The authors showed that
in quantum dots with the parabolic confinement the optical ex-
citation energies of the many-body system are exactly the same as
those of a single electron. Authors made significant conclusion that
Far IR spectroscopy can not probe the interaction of electrons when
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the confining potential is quadratic because the optical excitations are
then excitations of the cm and have exactly the same energies as
single-electron excitations [2].

Another work, devoted to this problem, was an article in which
Peeters showed that the resonance lines in the magneto-optical
absorption spectrum of asymmetric parabolic quantum dot is in-
dependent of the electron-electron interaction [3].

Parabolic form of confining potential has fundamental im-
portance, since in this case it is possible to convert into the normal
coordinates, in which the motion of system's center of mass and
relative motion of electrons are separated [2,4]. In particular, it can
be shown that in contrast to quantum dots with electrons, the
mixing of heavy- and light-hole states prohibits a separation of the
center-of-mass motion from the relative motion. This violation of
the condition required to satisfy the generalized Kohn's theorem
[5]. For InAs-GaSb type-II quantum dots the interlayer Coulomb
interaction between the electrons and the holes combined with
the k- p mixing breaks the generalized Kohn's theorem [G]. Note
that taking account of spin-orbit interaction also leads to the
failing of Kohn's theorem. In the above privacy, [7] the inclusion of
the spin-orbit interaction violates the mentioned theorem and
gives rise to a nonzero magnetoconductivity.

Mathematical model of confining potential of the quantum dot
is constructed based on geometry of the quantum dot, physical
and chemical characteristics of the quantum dot and its sur-
rounding environment. The emergence of the parabolic potential
can be interpreted as a profile smoothing of the quantum con-
finement at the QD- environment transition borders [8]. On the
other hand, it is well known that systems having specific geometry
(ellipsoidal, lenticular) exist in which parabolic confining potential
also forms [9,10].

It is important to note that initially the confinement potential is
being taken within the model of rectangular impenetrable walls
[10,11]. However, in the framework of the adiabatic method it can
be shown that, for instance, in the case of a strongly oblated el-
lipsoid of revolution the motion of the electron is limited by
parabolic confinement potential in the plane of ellipsoid [12-16].
Wherein, the frequencies of this potential are determined by the
geometrical parameters of strongly oblated ellipsoidal QD. We can
assume that in the case of electron gas the additional conditions
may also occur when the system will be localized in the two-di-
mensional parabolic field and, therefore, the conditions will be
performed given in the theory of Maksym-Chakraborty, for the
realization of the generalized Kohn theorem.

In this paper, it is shown the possibility of the realization of
generalized Kohn theorem for the case of the strongly oblated
ellipsoidal QD containing the electron gas and in the presence of
an external magnetic field.

2. Theory

Consider an ellipsoidal QD which has a shape of strongly ob-
lated ellipsoid of revolution with impenetrable walls in the pre-
sence of external magnetic field. Magnetic field directed by the
axis OZ. The confining potential for each particle has the following
form [17]:
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where b and a are, respectively, the minor and major semiaxes of
strongly oblated ellipsoidal quantum dot. The geometrical speci-
ficity of QDs is such that the motion of particle along the 0Z-axis

occurs much faster than in the plane perpendicular to it. There are
N particles, which interact in pairs, in the system considered. We
assume that the interaction of particles with QD walls along the
0Z-axis is so strong that one can neglect the interparticle inter-
action in this direction. Therefore the operator of interaction be-
tween electrons \l)im(ﬁ’l, D3y - » py) is a function of only coordinates
in the XOY plane,

7 -7 = o - %0t + 0 -y’

The Hamiltonian of the system considered has the form
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where c is the light velocity, y is electron effective mass.
We choose gauge of the vector potential as 7\; = %E)( - Y, %5, 0).

In this case div?\;- = 0 for any value of j. We can expand the Ha-
miltonian in such form
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As follows from expression (3), each electron moves in a one-
dimensional infinitely deep well in the Z-direction. According to
adiabatic approximation [9], the wave function of the system is
sought in the form
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where f (@}, .., py) is wave function of "slow” subsystem (in the
plane XOY), 1o nn @@, -, 2v(py)) is wave function of "fast”
subsystem (the variables of "slow" subsystem play the role of
constant parameters in the wave function of "fast" subsystem).

At fixed value of the coordinate p the motion of each particle is
localized in a one-dimensional potential well with the effective
width
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At relatively small number of particles one can assume that the
states of electrons in the Z-direction are independent of each other
and therefore the corresponding wave function is a product of
one-particle wave functions:

L Zv(oy)) )

sin 44

e ds(s;)

= 1 dy cos N Z;
dzf(/’j) (6)

In its turn, for the spectrum, describing the states of the system
in the Z-direction, we obtain
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Let us refine criteria of applicability of the mentioned approx-
imations. The Coulomb repulsive forces act between electrons. On
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