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H I G H L I G H T S

� Scattering and time-delay matrices j.p.d.f. of certain random quantum dots is found.
� Heat current do not probe unpaired Majorana states if one mode is ballistic coupled.
� Ballistic coupling may not lift unpaired Majorana states dependence in dI /dV curve.
� The Majorana phase transition can be probed in nanowire-random quantum dot geometry.
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a b s t r a c t

We calculate the joint distribution ( )P S Q, of the scattering matrix S and time-delay matrix
= − †Q i S dS dE/ of a chaotic quantum dot coupled by point contacts to metal electrodes. While S and Q

are statistically independent for ballistic coupling, they become correlated for tunnel coupling. We relate
the ensemble averages of Q and S and thereby obtain the average density of states at the Fermi level. We
apply this to a calculation of the effect of a tunnel barrier on the Majorana resonance in a topological
superconductor. We find that the presence of a Majorana bound state is hidden in the density of states
and in the thermal conductance if even a single scattering channel has unit tunnel probability. The
electrical conductance remains sensitive to the appearance of a Majorana bound state, and we calculate
the variation of the average conductance through a topological phase transition.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The quantum states of particle and anti-particle excitations in a
superconductor (Bogoliubov quasiparticles) are related by a uni-
tary transformation, which means that they can be represented by
a real wave function. In this so-called Majorana representation the
N�N scattering matrix S at the Fermi level is real orthogonal ra-
ther than complex unitary [1]. Since the orthogonal group ( )NO is
doubly connected, this immediately implies a twofold distinction
of scattering problems in a superconductor: the subgroup

( ) ≡ ( )+ N NO SO of scattering matrices with determinant þ1, con-
nected to the unit matrix, is called topologically trivial, while the
disconnected set ( )− NO of scattering matrices with determinant
�1 is called topologically nontrivial. In mathematical terms, the
experimental search for Majorana bound states can be called a
search for systems that have = −SDet 1. This search has been
reviewed, from different perspectives, in Refs. [2–6].

If the scattering is chaotic the scattering matrix becomes very
sensitive to microscopic details, and it is useful to develop a sta-
tistical description: rather than studying a particular S, one studies
the probability distribution P(S) in an ensemble of chaotic scat-
terers. This is the framework of random-matrix theory (RMT) [7–
9]. The ensemble generated by drawing S uniformly from the
unitary group ( )NU , introduced by Dyson in the context of nuclear
scattering [10], is called the circular unitary ensemble (CUE). Su-
perconductors need a new ensemble. A natural name would have
been the circular orthogonal ensemble (COE), but since that name
is already taken for the coset ( ) ( )N NU /O , the alternative name
circular real ensemble (CRE) is used when S is drawn uniformly
from ( )NO . The RMT of the CRE, and the physical applications to
Majorana fermions and topological superconductors, have been
reviewed recently [11].

The uniformity of the distribution requires ideal coupling of the
scattering channels to the continuum, which physically means that
the discrete spectrum of a quantum dot is coupled to metal elec-
trodes by ballistic point contacts. If the point contact contains a
tunnel barrier, then P(S) is no longer uniform but biased towards
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the reflection matrix rB of the barrier. The modified distribution
PPoisson(S) is known [12–16], it goes by the name “Poisson kernel”
and equals

( ) ∝ ( − ) ( )† −P S r SDet 1 1N
Poisson B

1

in the CRE [16].
In the present work we apply this result to the scattering

(Andreev reflection) in a superconducting quantum dot (Andreev
billiard), see Fig. 1. We focus in particular on the effect of a bound
state at the Fermi level (E¼0) in the quantum dot, a so-called
Majorana zero-mode or Majorana bound state. In addition to the
scattering matrix, which determines the thermal and electrical
conductance, we consider also the time-delay matrix

= − †Q i S dS dE/ . The eigenvalues of Q are positive numbers with
the dimension of time, that govern the low-frequency dynamics of
the system (admittance and charge relaxation [17–19]). Moreover,
the trace of Q gives the density of states and Q and S together
determine the thermopower [20,21].

The joint distribution of S and Q is known for ballistic coupling
[22–24], here we generalize that to tunnel coupling. The effect of a
tunnel barrier on the time-delay matrix has been studied for
complex scattering matrices [25,26], but not yet for real matrices.
One essential distinction is that the tunnel barrier has no effect on
the density of states in the CUE and COE, but it does in the CRE.

The outline of the paper is as follows. The next two sections
formulate the scattering theory of the Andreev billiard and the
appropriate random-matrix theory. Our key technical result, the
joint distribution ( )P S Q, , is given in Section 4. We apply this to the
simplest single-channel case (N¼1) in Section 5, where we obtain
a remarkable scaling relation: for a high tunnel barrier (trans-
mission probability Γ⪡1) the distribution ρ Γ( | )P of the density of
states at the Fermi level is described by a one-parameter scaling
function F(x):

⎧⎨⎩ρ Γ
Γρ

ρ Γ
( | ) ∝

( )
( ) ( )

P
F

F

/4 with a Majorana bound state,

4 / without a Majorana. 2

The average density of states in the multi-channel case is cal-
culated in Section 6. By relating the ensemble averages of Q and S
we derive the relation

⎜ ⎟⎛
⎝

⎞
⎠ρ ρ

Γ
〈 〉 = 〈 〉 − [〈 〉 − ]

( )
†

N
r S r1

2
Tr ,

3ballistic B B

for a mode-independent tunnel probability Γ. In the CUE and COE
the average scattering matrix 〈 〉S is just equal to rB, so ρ〈 〉 remains
equal to its ballistic value ρ〈 〉ballistic, but the CRE is not so
constrained.

Applications to the thermal conductance g and the electrical
(Andreev) conductance gA follow in Sections 7 and 8, respectively.
For ballistic coupling it is known that P(g) is the same with or
without the Majorana bound state [27]. (This also holds for ρ( )P
[23].) In the presence of a tunnel barrier this is no longer the case,
but we find that the Majorana bound state remains hidden if even
a single scattering channel has Γ¼1. The distribution of gA, in
contrast, is sensitive to the presence or absence of the Majorana
bound state even for ballistic coupling [28]. The way in which

( )P gA changes as we tune the system through a topological phase
transition, at which a Majorana bound state emerges, is calculated
in Section 9. We conclude in Section 10.

In the main text we focus on the results and applications. De-
tails of the calculations are moved to the Appendices. These also
contain more general results for other RMT ensembles, with or
without time-reversal and/or spin-rotation symmetry. (Both
symmetries are broken in the CRE.)

2. Scattering formulation

Fig. 1 shows the scattering geometry, consisting of a super-
conducting quantum dot (Andreev billiard) on the surface of a
topological insulator, connected to normal metal electrodes by
point contacts. The Hamiltonian H of the quantum dot is related to
the energy-dependent scattering matrix S(E) by the Mahaux–
Weidenmüller formula [29],

π
π

π π( ) = − ( − )
+ ( − )

= − ( − + )
( )

† −

† −
† † −S E

i W E H W
i W E H W

iW E H i WW W
1
1

1 2 .
4

1

1
1

The M�N matrix W couples the M energy levels in the quantum
dot (mean level spacing δ0) to a total of ⪡N M propagating modes
in the point contact.

We assume that degeneracies are broken by spin–orbit cou-
pling in the topological insulator in combination with a magnetic
field (perpendicular to the surface). All degrees of freedom are
therefore counted separately in N and M, as well as in δ0. The
electron–hole degree of freedom is also included in the count, but
we leave open the possibility of an unpaired Majorana fermion — a
coherent superposition of electron and hole quasiparticles that
does not come with a distinct antiparticle. An odd level number M
indicates the presence of a Majorana bound state in the quantum
dot, produced when a magnetic vortex enters [30]. An odd mode
number N signals a propagating Majorana mode in the point
contact, allowed by a π-phase difference between the super-
conducting boundaries [31].

The N modes have transmission probability Γ ∈ [ ]0, 1n per
mode. We neglect the energy dependence of the Γn's, which is
applicable if the coupling is via a high and narrow potential barrier
(realized, for example, by a magnetic insulator in the point con-
tact). If we choose a basis such that the coupling matrixW has only
nonzero elements on the diagonal, it has the explicit form [32]

δ
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Notice that the tunnel probability Γn determines the reflection
amplitude ∈ [ − ]r 1, 1n up to a sign. The conventional choice is to
take ≥r 0n , when κ κ= +

n n can be written as

κ
Γ

Γ Γ= ( − − − )
( )

+ 1
2 2 1 .

6n
n

n n

Alternatively, if ≤r 0n one has κ κ= −
n n given by

Fig. 1. Andreev billiard on the conducting surface of a three-dimensional topolo-
gical insulator. The billiard consists of a confined region (quantum dot, mean level
spacing δ0) with superconducting boundaries, connected to metal electrodes by a
pair of point contacts (supporting a total of = +N N N1 2 propagating modes). A
magnetic insulator introduces a tunnel barrier in each point contact (transmission
probability Γ per mode). A magnetic vortex may introduce a Majorana bound state
in the quantum dot.
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