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H I G H L I G H T S

� The second order nonlinear optical properties in semiparabolic QW are studied.
� The SHG and OR depend on the direction and the strength of the electric field.
� The blue (or red) shift of the resonance is induced by electric field.
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a b s t r a c t

Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are
studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectifi-
cation depend dramatically on the direction and the strength of the electric field. Numerical results show
that both the second-harmonic generation susceptibility and nonlinear optical rectification are always
weakened as the electric field increases where the direction of the electric field is along the growth
direction of the quantum wells, which is in contrast to the conventional case. However, the second-
harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as
the electric field increases where the direction of the electric field is against the growth direction of the
quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the
electric field when the direction of the electric field is along (or against) the growth direction of the
quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken
into account.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, the study of the optical properties in
semiconductor quantum wells (QWs) have been so intensively
studied [1–5]. This is because the nonlinear effects can be en-
hanced more dramatically in QWs than in bulk materials, which
can provide a promising route to the fabrication of semiconductor
quantum micro-device, such as high-speed electro-optical mod-
ulators, far-infrared photo detectors, and semiconductor optical
amplifiers and so on [6–9]. For the bulk susceptibility, the non-
linear effect is not very large because of the symmetry of the
crystal structure. For nano materials also with symmetric struc-
ture, even-order nonlinear optical effects are usually vanish in

theory. Thus the contributions to the second order nonlinear op-
tical susceptibilities are zero for a symmetrical QW, but as the
symmetry is broken, nonvanishing contributions to second order
nonlinear optical susceptibilities are expected to appear [2]. Con-
sequently, in order to obtain the enhanced second order nonlinear
optical susceptibilities in QWs, externally applied electric fields are
used to remove the symmetry [1–3] or the QWs structures are
produced with a built-in asymmetry using advanced material
growing technology [4,5].

Among the nonlinear optical properties, it is attracted much
attention to the second order nonlinear optical properties, such as
optical rectification (OR) and second-harmonic generation (SHG).
It is because the second-order nonlinear processes are the simplest
and the lowest-order nonlinear effects, and the magnitudes of
these second-order nonlinear coefficients are usually stronger
than that of the higher-order ones, as the symmetry of quantum
systems is broken. For example, Karabulut and Baskoutas studied
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the second and third harmonic generation susceptibilities for the
case of spherical quantum dot with parabolic confinement sub-
jected to an external electric field with the presence of an im-
purity. Their results indicate an increase of the electric field can
enhance the peak values of the second [10]. In 2003, Zhang and
Xie [1] reported nonzero contributions to SHG susceptibilities for
both parabolic and semiparabolic QWs. However, those pertaining
to parabolic QWs are completely wrong and contradicts with well-
established literature, which had been commented by Karbulut et
al. [2]. Karabulut and Safak later [11] studied the nonlinear OR in
semiparabolic QWs with an applied electric field. The nonlinear
optical properties in the semiparobolic QW have been attracted
much attention, such as exciton effect [12], optical absorption [13]
and SHG [14].Recently, Guo and Du [15] have reported their results
for linear and nonlinear optical absorption coefficients and re-
fractive index changes in asymmetrical Gaussian potential QWs
with applied electric field in the limit ⪡z L replaced the potential
− ( − )V z Lexp /20

2 2 with the semiparabolic potential − ( − )V z L1 /20
2 2

. We find both the energy and the corresponding wavefunction for
the low-lying state are wrong to use in works above [16,17]. Un-
fortunately, these have not been attracted considerable attention
by these authors [18–20]. After the other optical properties in the
asymmetrical Gaussian potential QWs are investigated, such as
nonlinear OR [18], SHG [19] and nonlinear optical absorption via
two-photon process [20]. Factually, the direction of the electric
field is of importance for studying the nonlinear effect. But there is
little literatures for reporting it. Therefore, it is very necessary to
investigate the nonlinear optical properties for electron confined
in the semiparabolic QWs in the presence of the applied electric
field where the direction of the electric field is along (or against)
the growth direction of the QWs.

In this paper, electric-field-induced SHG susceptibility and
nonlinear OR coefficient in semiparabolic QWs are investigated
theoretically. We find that both the SHG susceptibility and non-
linear OR depend dramatically on the direction and the strength of
the electric field. Numerical results show that the SHG suscept-
ibility is always weakened as the electric field increases no matter
the direction of the electric field is along (or against) the growth
direction of the QWs. However, the nonlinear OR is weakened (or
strengthen) as the electric field increases where the direction of
the electric field is along (or against) the growth direction of the
QWs. Also it is the blue (or red) shift of the resonance that is in-
duced by increasing of the electric field when the direction of the
electric field is along (or against) the growth direction of the QWs.
Finally, the resonant peak and its corresponding to the resonant
energy are also taken into account. This paper is organized as
follows: Hamiltonian, the relevant wave functions and energy le-
vels are briefly described in Section 2. Also the analytical expres-
sions of the SHG susceptibility and OR coefficient in semiparabolic
QWs are presented in this section. Numerical calculations and
detailed discussions for typical AlxGa1�xAl/GaAs materials are gi-
ven in Section 3. Finally, a brief summary is presented in Section 4.

2. Theory

Within the framework of effective-mass approximation, the
Hamiltonian of an electron confined in semiparabolic QWs in the
presence of electric field along the z axis can be written by
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where, z represents the growth direction of the QWs. ⁎me is the
effective mass in materials. ℏ is the Planck constant. ω0 is fre-
quency of the semiparabolic confined potential in QWs, F is the
strength of the electric field, η =+ 1 (or �1) describes the direction
of the electric field is along (or against) the growth direction of the
QWs and q is the absolute value of the electric charge. Under the
envelope wave-function approximation, the eigenfunctions Ψ ( )rt k,n

and eigenenergies εt k,n are the solutions of the Schrödinger equa-
tion for H and are given by [1,19,21,22]
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Here, ∥k and ∥r are the wave vector and coordinate in the xy plane
and Uc(r) is the periodic part of the Bloch function in the con-
duction band at ≡k 0. Φ ( )ztn and Etn can be obtained by solving the
following Schrödinger equation
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The electronic energy levels and corresponding wave functions are
given as follows [1]:
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where Htn is the Hermite functions and tn is real, Nn is the nor-
malization constant. tn is determined by Φ ( = ) ≡z 0 0tn , that is to
say, the relation always should be satisfied as αβ( ) ≡H 0tn . Ob-
viously, = +t n2 1n as the electric field is in absence, where

= …n 0, 1, 2 .
The formulas of the SHG susceptibility and the OR coefficient in

the two models will be derived by using the compact-density-
matrix method and the iterative procedure. The system is excited
by electromagnetic field ( ) = ˜ + ˜ω ω−t Ee EeE i t i t . Let us denote ρ as the
one-electron density matrix for this regime. Then the evolution of
density matrix is given by the time-dependent Schrödinger
equation

ρ
ρ Γ ρ ρ
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where H0 is the Hamiltonian for this system without the electro-
magnetic field ( )tE ; ρ( )0 is the unperturbed density matrix; Γij is
the relaxation rate.

Eq. (9) is calculated by the following iterative method [1]:
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