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H I G H L I G H T S

� Influence of the in-plane magnetic field on commensurability oscillations is studied.
� Quasi-classical theory of the guiding-center drift was extended to this case.
� Importance of in-plane field-induced deformation of electron orbits is revealed.
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a b s t r a c t

We report on a theoretical study of the commensurability oscillations in a quasi-two-dimensional
electron gas modulated by a unidirectional periodic potential and subject to tilted magnetic fields with a
strong in-plane component. As a result of coupling of the in-plane field component and the confining
potential in the finite-width quantum well, the originally circular cyclotron orbits become anisotropic
and tilted out of the sample plane. A quasi-classical approach to the theory, that relates the magneto-
resistance oscillations to the guiding-center drift, is extended to this case.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

An isotropic quasi-two-dimensional electron gas confined in a
quantum well of a finite width has circular Fermi contours. A
single contour in systems with a single occupied subband, two
concentric circles if also the excited subband is occupied.

Under the influence of a strong in-plane magnetic field the
contour shapes deviate from circles. The deviations depend on the
magnetic field strength and the form of the confining potential.
Such systems may undergo the Lifshitz phase transition [1], the
related effects can be investigated both experimentally and
theoretically.

The Fermi contours acquire an asymmetric egg-like shape in an
asymmetric triangular potential at the hetero-interface [2,3]. In
wide quantum wells and double wells with a single occupied
subband the Fermi contours resemble the Cassini ovals. As the in-
plane magnetic field increases an elongated convex Fermi curve
acquires the concave peanut-like shape and at high enough in-
plane field the single Fermi line splits into two parts [4,5]. In
systems with two occupied subbands the excited subband can be

emptied at a certain critical in-plane field, and the corresponding
second Fermi loop disappears.

The deformation of a Fermi contour shape can be characterized
by a single experimentally measurable quantity, the magnetic-
field-dependent cyclotron mass [3-5]. Its field-dependence can be
studied e.g. by the cyclotron resonance in the infrared region of
the optical spectra [6–8,9,10] or the temperature damping of
Shubnikov-de Haas oscillations [11,12,13]. The closely related
magnetic-field dependence of the density of states is reflected in a
resistance oscillation measured as a function of the in-plane
magnetic field [14,15].

More detailed information about the size and shape of Fermi
contours can be gained from the magneto-electron focusing ex-
periments and the commensurability oscillation measurements
[16,17], if a weak perpendicular field component is added to the
strong in-plane magnetic field. The commensurability oscillations
[18,19,20,21] are oscillations of the magnetoresistance measured
at low temperatures and in a low perpendicular magnetic field in
the presence of a weak modulation potential. They are periodic in
the inverse field and their period reflects the commensurability of
the cyclotron orbit diameter and the modulation period.

The first usage of the commensurability oscillation measurement
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in strong in-plane magnetic fields was to confirm the distortion of
the Fermi contour to the egg-like shape [17]. Two experimental ar-
rangements were examined, with a lattice vector of the unidirec-
tional lateral superlatice either parallel or perpendicular to the in-
plane magnetic-field component. The observed results were con-
sistent with the theoretical prediction.

The influence of the Fermi-loop-egg-like deformation on the
chaotic electron dynamics in a two-dimensional antidot lattice
was studied both theoretically and experimentally. Reasonable
agreement between the theory and the experiment was achieved
[22,23].

Recently, the commensurability oscillations were investigated
in detail in a wide double hetero-junction well with an occupied
bonding subband and a unidirectional modulation potential [24].
The caliper dimensions of the in-plane field-distorted Fermi con-
tours obtained from the experimental data were compared with
the results of the first-principle self-consistent calculation. An
overall semi-quantitative agreement was achieved between the
experimental and the theoretical results. However, a systematic
discrepancy was found between the observed and the calculated
elongation of the Fermi contour for the case of a lattice vector
parallel to the in-plane magnetic field.

To shed light on this apparent discrepancy between the theo-
retical and the experimental findings, we try to extend the quasi-
classical approach, which relates the magnetoresistance oscilla-
tions to the guiding-center drift, to the case of cyclotron orbits
which are anisotropic and tilted out of the sample plane.

This paper does not aim at quantitative interpretation of the
published experimental data [24]. We try to analyze the possible
reasons of this discrepancy on the semi-qualitative level, instead.
To illustrate the relevance of our approach, we present the results
of a numerical calculation based on the simple tight-binding
model of a double well [25–27].

2. Cyclotron orbits in tilted magnetic field

Let us first summarize the properties of a quasi-two-dimen-
sional electron layer confined to the −x y plane by a finite-width
quantum well with a potential Vconf(z). We further consider that
the layer is subject to a tilted magnetic field B with a strong in-
plane field component By and a weak component Bz oriented
perpendicularly to the sample plane.

The parallel field component By modifies the dependence of the
electron energy ( )E k on the wave vector ≡ ( )k kk ,x y . It does not
influence the harmonic dependence of energy on the wave vector
component ky, but the originally parabolic dependence on kx is
changed dramatically. The deviation from parabolicity depends on
the field strength and the form of the confining potential Vconf(z).
Consequently, the energy spectrum of the system subject to By can
be written as

( ) = ( ) + ( )E k k E k
k
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In symmetric wide wells or double wells the curvature of ( )E kx

decreases for kx close to kx¼0 as By increases, and, at a certain
value of By, becomes negative. A local maximum develops at kx¼0,
accompanied by two new minima positioned symmetrically
around it.

The Fermi contour is defined in the k-plane by = ( )E E k k,F x y ,
where EF denotes the Fermi energy. As the in-plane field By grows,
the original Fermi circle with the Fermi radius kF becomes a con-
vex contour elongated in kx-direction and contracted in
ky-direction. We denote its caliper dimensions by kF x, and kF y max, .

At a certain critical field the contour acquires the concave

peanut-like shape and a new caliper dimension kF y min, appears at
kx¼0. The width k2 F y min, of a peanut ‘waist’ is shrinking toward
zero as By grows upward. An example of a concave Fermi contour
is shown in Fig. 1. Above the second critical field the contour splits
into two parts [3,5].

The influence of the added weak perpendicular field compo-
nent Bz can be treated quasi-classically, the perpendicular field Bz
drives an electron along the Fermi contour by the Lorentz force.
The equations

̇ = − | | ̇ = | | ( )k e B v k e B v, . 2x z y y z x

describe the electron motion along an orbit in the −k kx y plane,
here e denotes the electron charge and the components of the
velocity v are defined by
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From these expressions we can calculate the time t that an
electron needs to travel along a part of the Fermi contour, e.g.,
from ( ) = ( − )kk 0 , 0F xc , to = ( )k kk ,x yc ,
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The magnetic field Bz enters this expression through the magnetic
length ℓz, ℓ = (| | )e B/z z

2 . The period of the cyclotron motion T is
given by the corresponding closed path integral.

The cyclotron frequency and the in-plane field-dependent cy-
clotron effective mass mc, mentioned in the Introduction, are re-
lated to T by ω π= = | |T e B m2 / /c z c. The explicit expression for mc

reads

∮π
=
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m
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The cyclotron mass enters the expression for the density of
states g,

π
= ( )g

m
. 6

c
2

Eqs. (5) and (6) also determine the relation between the elec-
tron concentration N and the Fermi energy EF through =N gEF .
Note that in zero in-plane field this relation reduces to

= ( )E k m/ 2F F
2 2 , where the Fermi wave vector kF is given by

π=k N2F .
Let us now turn attention to the time evolution of the related

real-space cyclotron orbits + ( )tR rc , which are important for the
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Fig. 1. The caliper dimensions of the concave Fermi contour at =B 8 Ty . Dots mark
the turning points on the related cyclotron orbits rotated by π/2 and multiplied by
ℓz
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