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H I G H L I G H T S

� A reduced dimensionality model is
used for torsional vibrations in star
molecules.

� The model shows proper asymptotic
behavior when extrapolated into the
nano-regime.

� Non-bonded torsional interactions
are important to the dynamical be-
havior.

� The model explains the anomalously
large apparent inertial moments in
these systems.
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a b s t r a c t

The torsional vibrations of star molecules are studied with a reduced dimensionality model. In this
model, the molecule is described by two equivalent sets of lumped inertial cylinders and vibrational
frequencies are predicted by solution of the coupled equations of motion. Force constants are determined
by including them as free parameters in the model and fitting the computed frequencies to their analogs
as determined using full normal coordinate analysis at the HFSCF level of theory. Best agreement be-
tween the methods occurs when torsional force constants are included for the first two layers of the
molecule. This reveals that non-bonded torsional interactions are important in the vibrational dynamics
of these systems. Further insight is afforded by an analysis of why simple harmonic oscillator models are
sufficient for modeling some related systems but fail to reproduce the trend in global mode frequencies
for saturated aliphatic star molecules. The analysis reveals that the origin of this failure lies in backbone
flexibility in these branched polymeric systems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dendrimers and star molecules are interesting classes of mo-
lecules that show promise for application in polymer network
scaffolds [1,2] and molecular drug delivery devices [3,4]. Many key
materials properties in such systems depend on vibrational mo-
tion within the backbone of the dendrimer, and therefore there is
interest in understanding these vibrational modes and their

frequencies. In particular, low frequency modes tend to be sig-
nificantly populated at ambient temperatures. The determination
of low frequency vibrational modes is consequently central to
understanding the thermal dynamics of a system. For example,
Rossi, Scheffler and Blum demonstrated that low frequency vi-
brational modes dominate the temperature dependent contribu-
tion to free energies in polypeptides, and their work suggests that
certain protein secondary structural motifs are favored due to
presence of low frequency vibrational modes [5]. Other work by
Kunal and others shows that the glass transition temperature of
polymers is predominantly a function of backbone flexibility [6].
Additionally, Murmu, Adhikari and Wang have applied continuum
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based methods for torsional vibrational frequencies in carbon
nanotube–buckyball systems [7].

The traditional technique for studying molecular vibrations is
molecular normal coordinate analysis (NCA). It is well established,
but becomes intractable for large systems and is therefore im-
practical for application in the nano-regime. This limitation pre-
cludes the application of NCA to dendrimer and star systems, save
for the very smallest examples. It is therefore desirable to have a
simplified model, both to reduce the dimensionality of the system,
as well as to eliminate the need for the costly generation of the
Hessian matrix. Toward this end, reduced dimensionality models
have previously been reported for polyphenyl chains [8] as well as
fullerene superatom dimers [9] and provide new insight into the
vibrational dynamics of those systems. Dendrimers and star mo-
lecules possess the feature that they can be constructed in a
controlled, stepwise manner [10]. Owing to this feature, these
molecules are an ideal platform for the study of the properties of
dendrimer-based nanomaterials because one may extrapolate into
the nano-regime from a systematic progression of smaller sys-
tems. Here we capitalize on this feature of star molecules and
present a new model to elucidate the nature of torsional oscilla-
tions in dendrimers and star molecules.

2. Theoretical methods

2.1. Systems studied

In this study the family of star molecules having the molecular
formula C6nþ2H12nþ6 is studied, and for comparison a smaller set
of stars with the general formula C6nþ2H18. Representative mole-
cular structures are shown in Fig. 1. These molecules exhibit a set
of torsional vibrations about the axis coincident with the central
C–C bond. For each molecule, there exists a low frequency
(o120 cm�1) global torsional mode (Fig. 2A) and a higher fre-
quency (�300–350 cm�1) local torsional mode (Fig. 2B). Mole-
cules larger than molecule B in Fig. 1 also exhibit torsional motion
in between these two motions. Additionally, there exist modes in
which all atoms in one layer equidistant from the central axis
undergo angular motion in opposition to the atoms in the adjacent
layer(s) (Fig. 2C). We refer to these types of modes as “barrel”
modes.

2.2. Cylinder model

To model the torsional motion of these branched hydrocarbon
chains about the principal axis of the molecule, the torsional
motion is described as relative rotations among a set of rigid in-
ertias, each constructed to represent a group of main chain carbon
atoms equidistant from the principal axis, (hereafter referred to as

“cylinders”). The cylinders are further divided into two sets, one
on either side of the plane perpendicular to the principal axis on
which the center of mass lies. Hydrogen atoms are not modeled
explicitly but instead their masses are lumped together with the
carbon atoms to which they are bonded. Thus we arrive at two sets
of “nested cylinders,” all with a common axis. A schematic of this
is shown in Fig. 3.

We assume a Hooke's Law restoring force about equilibrium
angular separation between any two adjacent cylinders. This ef-
fectively reduces the number of vibrational normal modes for an
n-atom molecule from 3n�6 to N�1, where N is the number of
cylinders in the model. For a hydrocarbon that branches out into
3 strands on either side of the center of the molecule, such as
those studied in this report, N¼ −n 8

9
and this approximation re-

duces the number of degrees of freedom in the problem by 27-
fold. Since normal mode analysis depends on diagonalization of
the force constant matrix, which scales as O(s3) where s is the
dimension of the matrix, this dimensional reduction corresponds
to a significant decrease in computational cost for large systems.
Systems that are intractable to full molecular normal mode ana-
lysis can be studied using this cylinder model.

Consider a molecule that has been subdivided into N cylinders.
The innermost cylinder pair is defined as cylinders 1L and 1R, (L
meaning left and R meaning right.) The next layer of cylinders is
named 2L and 2R, and so on until all cylinders have been assigned.
The force constant between the ith and iþ1ith cylinder is denoted
kli and represents the interaction between two adjacent layers on
the same half of the molecule. The force constant joining the left
and right cylinders of the ith layer is denoted kti, representing a
torsional restoring force in the ith layer. The angular equations of
motion for a molecule of N cylinders are [11]:

For i¼1
θ̈ = (θ −θ )+ (θ −θ )( + )I kl kti iiL iL i,L i 1 L i,L iR

θ̈ = (θ −θ )+ (θ −θ )( + )I kl kti iiR iR i,R i 1 R i,R iL

For 1o io2N
θ̈ = (θ −θ )+ (θ −θ )+ (θ −θ )− ( − ) ( + )I kl kl ktiL iL i 1 i 1 ,L iL i i,L i 1 L i i,L iR

θ̈ = (θ −θ )+ (θ −θ )+ (θ −θ )− ( − ) ( + )I kl kl ktiR iR i 1 i 1 ,R iR i i,R i 1 R i i,R iL

For i¼2N
θ̈ = (θ −θ )+ (θ −θ )− ( − )I kl ktiL iL i 1 i 1 ,L iL i i,L iR

θ̈ = (θ −θ )+ (θ −θ )− ( − )I kl ktiR iR i 1 i 1 ,R iR i i,R iL ,

where IiL is the moment of inertia of the ith cylinder on the left
hand side about the principal axis, θiL is the angular position of the
ith cylinder on the left hand side and the R subscript implies the
cylinder on the other side of the molecule. In matrix form, this
becomes simply

Fig. 1. Representative molecular structures of saturated hydrocarbon star molecules. Hydrogen atoms are omitted for clarity. (A) C8H18, N¼2. (B) C14H30, N¼4. (C) C32H66,
N¼10. (D) C74H150, N¼24. N is the number of cylinders used to represent the molecule in the model.
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