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H I G H L I G H T S

� We drive analytically the transmission probability for SSL.
� There are resonance picks (RP) in transmission probability.
� The number of RP increases with increasing the number of SSL barriers.
� The oscillating conductance suppresses with imposing disorder in SSL.
� Dc conductance of the system depends on structural parameters.
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a b s t r a c t

This paper studies the conductance of charge carriers through silicene-based superlattices consisting of
monolayer silicene by means of transfer matrix method. At first, we consider the ordered superlattices
and drive analytically the transmission probability of Dirac fermions. We show that the number of re-
sonance picks increases with increasing the number of superlattice barriers. In order to the best un-
derstand of the appearance of the picks, we exactly studied transmission properties of the silicene su-
perlattice. Also, the effect of disorder on the probability of transmission through the system of various
sizes is studied. The short-range correlated disorder is applied on the thickness of electron doped silicene
strips as quantum barriers which fluctuates around their mean values. We show that the oscillating
conductance as a function of barriers hight suppresses with imposing the disorder in the silicene su-
perlattice. Also, the effect of structural parameters on the conductance of the system is studied.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional carbon crystals are hosts for Dirac type
electrons, whose unusual properties have been studied extensively
in graphene monolayers [1]. Recently, a close relative of graphene
2D honeycomb lattice of Si atoms called silicene has attracted a lot
of research interest since the nanoribbons of silicene have been
synthesized successfully [2–5].

Similar lattice structures between graphene and silicene bring
up their similar band structures with Dirac cone type of dispersion
near the Fermi surface, leading to similar physical properties be-
tween them. Theoretical calculations show that silicene has also
graphene-like electronic band structure, supporting charge car-
riers behaving as massless Dirac fermions [6,7]. Due to the lattice
structure, electrons in silicene obey the Dirac equation around the

K and ′K points at low energy [8].
However, it has two salient features absent in graphene. One is

the relatively large spin–orbit interaction, which enables quantum
spin-Hall effects to realize. Unfortunately, spin–orbit interaction of
graphene is tiny so that the quantum spin Hall effect in a graphene
has not been experimentally observed. In contrast, spin–orbit in-
teraction of silicene is 1000 times larger than that of graphene
[12,13]. So, the quantum spin Hall effect in silicene is experi-
mentally accessible [6]. The other is its buckled structure, while
the graphene layer forms a regular plane, the silicene layer instead
takes the form of noncoplanar buckled structure, with the sub-
lattices A and B forming two separate planes. This buckled struc-
ture enables us to control the mass of the Dirac electrons by ap-
plying an external electric field perpendicular to the silicene sheet
[9]. As electric field increases, the Dirac mass decreases linearly,
and vanishes to a critical value, and then increases linearly. These
massive Dirac fermion systems lead to a quantum spin Hall in-
sulator, which is originally proposed in a graphene [10,11]. These
characteristics can be useful for device applications. The most
fundamental electronic device is a field effect transistor. Field
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effect transistor made by silicene has an advantage that it has a
large band gap due to spin–orbit interaction compared with gra-
phene which is a zero gap semiconductor.

Charge [14] and spin [15] transport properties of a silicene
nanoribbon have been studied. Also, the Klein tunneling of pn and
npn junctions made from silicene has been investigated [16]. In the
semiconductor context there are basically a large number of works
on the tunneling, which have resulted in the “obvious” declaration
that the electronic properties of semiconductor superlattice are
different from those calculated in a single-barrier junction. In the
graphene superlattices, a new Dirac point is found which corres-
ponds to the zero averaged wave number inside the 1D periodic
potentials.

With the advent of more sensitive characterization techniques,
it has become evident that not only are semiconductor interfaces
almost never ideal, but that this unintentional disorder in real
samples has discernible spectroscopic and transport consequences
that should be taken into account by theory. Disorder in the su-
perlattices can be classified in two: (i) lateral and (ii) vertical ca-
tegories. Vertical disorder, studied in this paper, is along the su-
perlattice growth direction in the form of discrete layer-thickness
fluctuations. The electronic properties of semiconductor super-
lattices in the presence of disorder have been studied by several
groups [17–21]. The transition hitting massless particles in a clean
[22] or disordered [23,24] graphene-based superlattice structure
has been studied. It is shown that the conductivity of the system
depends on the superlattice structural parameters. Importantly, all
the electronic states are localized in the thermodynamic limit for a
semiconductor superlattice in the presence of white-noise dis-
order [25]. Also, it is investigated that how the conductance of
graphene superlattice junctions is affected by structural white
noise and compared the conductances with those calculated for
disordered semiconductor superlattice. In this paper we study the
conductance of Dirac fermions in clean and disordered silicene
superlattices. We show that the number of resonance picks in-
creases with increasing the number of superlattice barriers. This
behavior also appears in graphene. We calculate analytically the
transmission probability and describe the reason of the appear-
ance of the resonance picks. Also, the effect of onsite potential
difference Δz is investigated on the transmission probability. We
plot the conductance of the system as a function of potential
height and show that it has an oscillatory behavior. Finally, we
consider the effect of barriers disorder that maybe generated be-
cause of the random nature of experimental technique on the
conductance of the silicene superlattice.

The rest of this paper is organized as follows. In Section 2, we
describe the transfer matrix method and calculate the transmis-
sion probability of Dirac fermions in the ordered silicene super-
lattice and Section 3 gives the numerical and theoretical results.
The conclusions are summarized in Section 4.

2. Model and method

Consider a system of superlattice p–n junctions in the in-
dependent carrier model at zero temperature and in the absence
of carrier–phonon interactions. The Hamiltonian of silicene in the
continuum model in the vicinity of the K and ′K points can be
written as [16]

υ τ τ η Δ τ σ η Δ τ^ = ℏ ( − ) − + ( )H k k , 1f x x x x z SO z z z z z0

where η = ± 1i for the inequivalent the K and ′K valleys, τi is the
sublattice (A and B sites) pseudospin, ki is an envelope function
momentum operator, σ = ± 1i is the pauli matrices for the spin,
where i¼x, y and z, and υf is the Fermi velocity. ΔSO denotes the

intrinsic spin–orbit coupling constant. And also, Δz is the onsite
potential difference between A and B sublattices, which is tunable
by an electric field applied perpendicular to the plane.

We consider superlattice p–n junctions in a silicene based
structure. The system consists of two kinds of monolayer silicene
strip with different potentials alternately. Due to the difference of
Fermi energy and band structure between two silicene strips, the
potential profile of the system is the multiple quantum well
structure which is given by
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where x2i is the position of barriers' center. In this system the
thickness of wells and barriers are dW and dB respectively. The
model is similar to the potential of semiconductor superlattices
that has been used by other groups [21].

The total Hamiltonian of a Dirac carrier in a special geometry is
written as = + ( )H H V x0 , where V(x) is the silicene-based super-
lattice potential which is described above. The growth direction is
taken to be the x-axis which is designed as the superlattice axis. To
solve the transport problem in a silicene superlattice, we assume
that the incident electron propagates at angle Φ along the x-axis
with energy E across the barriers, in such a way that the Fermi
level lies in the conduction band outside the barrier and the va-
lence band inside it. Throughout the paper, we consider the
electronic states with energy below the barrier energy
(Δ Δ< < −E V0 ) called Klein zone, which are the most interesting
ones to study quantum confinement effects. In order to neglect the
strip edges, we assume that the width of the silicene strip is much
larger than dB. Hereafter, we focus only on the K point (η = 1z ). The
same analysis is applicable to the ′K point.

In order to analyze the transport problem in a monolayer sili-
cene superlattice, we assume that the electrons are incident at an
angle Φ, with respect to the x-axis. The general solutions of the
Dirac Hamiltonian can be expressed as:
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and Δ ησΔ Δ= −SO z .
In order to calculate the transmission coefficients, we use the

transfer matrix method [21] as follows:
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where A is the transfer matrix. We apply the continuity of the
wave function at the boundaries and we can calculate the trans-
mission coefficient from the expression:
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