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H I G H L I G H T S

� The modified strain gradient elastic shell model was developed.
� Numerical results showed good agreement with those of MD simulations.
� Effects of strain and inertia gradient parameters on dispersions were studied.
� The number of cut-off frequencies depends on the circumferential wave number.
� Asymptotic phase velocities versus gradient parameters were analytically derived.

a r t i c l e i n f o

Article history:
Received 9 September 2014
Received in revised form
5 April 2015
Accepted 17 April 2015
Available online 20 April 2015

Keywords:
Carbon nanotube
Wave dispersion
Gradient elasticity
Shell model
Small scale effect

a b s t r a c t

Dispersion relation of single-walled carbon nanotubes (SWCNTs) is investigated. The governing equa-
tions of motion of SWCNTs are derived on the basis of the gradient shell model, which involves one strain
gradient and one higher order inertia parameters in addition to two Lamé constants. The present shell
model can predict wave dispersion in good agreement with those of molecular dynamic (MD) simula-
tions available in the literature. The effects of two small scale parameters on the angular frequency and
phase velocity in the longitudinal, torsional and radial directions are studied in detail. The numerical
results show that the angular frequency and phase velocity increase with the increase of strain gradient
parameter, whereas decrease with inertia gradient parameter increases. In addition, analytical expres-
sions of the cut-off frequencies and asymptotic phase velocities are given. It is found that the number of
cut-off frequencies is dependent on the circumferential wave number, and two asymptotic phase velo-
cities exist for nonzero value of strain gradient parameter, while only one exists when the strain gradient
parameter is excluded.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) have now gained considerable
worldwide attention for a variety of applications, such as atomic
force microscopes, nano-actuators and nano-fillers for composites
materials, due to their unique mechanical, electrical, and chemical
properties [1,2]. Therefore, a thorough understanding of their
mechanical properties and behaviors by atomic simulation, ex-
perimental work and modeling is of great interest to explore their
numerous potential applications.

Owing to the low dimension of CNTs, controlled experiments at
the nanoscale is challenging. On the other hand, atomic modeling,

including molecular MD, tight-binding MD and the density func-
tional model, is prohibited for large-scale systems. Therefore,
continuum models including one dimensional (1D) beam models
and two dimensional (2D) shell models have been employed
regularly to study the mechanical behaviors of CNTs in recent
years. Extensive work related by the classical continuum models
has been conducted for CNTs, such as buckling [3,4], vibration [5–
7] and wave propagation [8–10]. These classical continuum mod-
els are not capable to characterize the micro-structure of the CNTs
due to the lack of micro-structure of the material. Therefore, the
application of non-classical elasticity to model the microstructure
of CNTs has become an interesting issue. Examples for such size-
dependent elastic theories are couple stress theory [11–13], sur-
face elasticity [14], strain gradient elasticity [15] and stress gra-
dient elasticity (nonlocal elasticity) [16], to name a few. Among
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those existing size-dependent elastic theories, the nonlocal elas-
ticity has been widely used as an efficient tool to model the
bending [17–19], buckling [20–24], vibration [25–27] and wave
propagation [28–31] of CNTs. For example, a nonlocal Euler beam
model by Peddieson et al. [18] and the nonlocal Timoshenko beam
model by Wang [28] are formulated on the basis of Eringen’s
nonlocal elasticity [16]. Further work of nonlocal elasticity has
been well documented in the study of bending, buckling, vibration
and wave propagation of CNTs, either by 1D beam models or 2D
shell models [32]. These existing nonlocal models result in over-
prediction of deflections and under-prediction of buckling loads
and free vibration frequencies. In other words, the incorporation of
nonlocal parameter in the governing equation of motion softens
the structures.

On the other hand, the strain gradient theory has also been
widely used to the study of engineering structures (see, for ex-
ample, the works of Kröner [33], Mindlin [12] and Hermann et al.
[34] ). However, this theory contains numerous material constants
to be determined by the experiments. As a result, simplified strain
gradient theory that contains fewer material constants becomes
the topic of current interest. For the wave propagation problems in
earlier works, one can refer to the works of Hermann et al. [34],
Exadaktylos et al. [35] and Georgiadis et al. [36,37]. In recent years,
the simplified strain gradient theory has also found applications in
CNTs. For instance, Papargyri-Beskou et al. [38] formulated the
Euler–Bernoulli beam within the context of gradient elasticity
with surface energy, in which the problems of bending and sta-
bility analysis were analytically solved. The strain gradient elasti-
city have been widely applied to the static and dynamic analysis of
micro- and nanostructures in the form of beams [19,39–42], plates
[43, 44] and shells [45,46]. Recently, Polizzotto [47] addressed an
elastic material featured by potential energy depending on the
strain and the strain gradient, and a kinetic energy depending on
the velocity and the velocity gradient; the dispersion relation for
beam models were derived. Polizzotto's elastic gradient elasticity
opens a new topic of current interest to explore the vibration and
wave characteristics of micro/nanoscale structures. Askes et al.
[48] demonstrated that the gradient elasticity and inertia gradient
were shown to describe flexural wave dispersion in CNTs in a re-
latively wide range of wave numbers, good agreement with that
predicted by MD simulations was found [39]. Later on, generalized
gradient Euler–Bernoulli beam model and Timoshenko beam
model were established to the analysis of flexural wave dispersion
and vibration of CNTs [49–51]. These existing works are, however,
limited to 1D structures. Recently, the 2D gradient models have
become an increasing topic of interest. Papargyri-Beskou et al. [52]
used the gradient Donnell shell model to study the wave propa-
gation and free vibrations of elastic shells. Ghavanloo et al. [53]
investigated the free vibration of orthotropic doubly-curved shal-
low shells based on the gradient elasticity. A first order shear de-
formation shell theory based on the stress and strain-inertia gra-
dient elasticity was developed by Daneshmand et al. [54] for free
vibration analysis of SWCNTs. Zeighampour et al. [55] derived the
governing equations of thin shells by using modified strain gra-
dient theory. In their work [55] , they also presented the varia-
tional-consistent boundary conditions and studied the free vibra-
tion of simply-supported shells. To our best knowledge, no work
has been performed on wave propagation of SWCNTs using gra-
dient Flügge shell models.

The paper is organized as follows. In Section 2, the Mindlin's
simplified strain gradient theory is reviewed and the governing
equations of motion of SWCNTs using the simplified strain gra-
dient theory are derived. In addition, the explicit expressions of
cut-off frequencies and asymptotic phase velocities are obtained.
The effects of two small scale parameters on angular frequencies
and phase velocities of SWCNTs are illustrated in Section 3, and

conclusions are included in Section 4.

2. Linear elastic gradient shell model

2.1. Simplified strain gradient elastic theory

Within the framework of the simplified strain gradient elastic
theory of Mindlin [12], the constitutive equations are given by
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where σ and τ are the total and the classical Cauchy tensors,
respectively, μ is the double stress tensor, I is the unit tensor, λand
ν are the usual Lamé constants, ε is the classical strain tensor.∇ 2 is
the Laplacian operator, and l2 is the strain gradient parameter
characterizing the microstructure of the material. The compatible
equations are

∇⎡⎣ ⎤⎦u ( u) /2, tr u, (2)
Tε ε= ∇ + ∇ = ⋅

where u is the displacement vector.

2.2. Governing equations

A SWCNT is modeled by a cylindrical elastic shell with mean
radius R, thickness h, as shown in Fig. 1. A cylindrical coordinate
system x z( , , )θ is adopted such that the origins are set on the
middle surface of the shell, x and θ denote longitudinal and an-
gular circumferential coordinates, and z is the coordinate along
the thickness direction (inward positive) of the shell. u v, and w
are the displacement components in the x, θ and z directions,
respectively. In the present paper, the SWCNT is assumed to be
homogeneous with Young's modulus E, shear modulus G, Poisson's
ratio μ and mass density ρ.

Based on the Flügge shell theory, the strain components xxε , εθθ
and xε θ at any arbitrary point of the shell are related to the middle
surface strains ,xx

0 0ε εθθ and x
0ε θ , and to the curvature of the middle

surface ,xxκ κθθ and xκ θ by
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Fig. 1. Schematic illustration of the model with cylindrical coordinate system.
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