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H I G H L I G H T S

� We investigate the shot noise prop-
erties through graphene super-
lattice.

� The Fano factor depends on the
number of barriers.

� For the parallel configuration the
Fano factor reaches a Poissonian va-
lue.

� For the antiparallel configuration the
Fano factor at the Dirac point equals
1/3.

G R A P H I C A L A B S T R A C T

In the parallel magnetization configuration when the number of the barriers is large enough unlike
antiparallel magnetization configuration the Fano factor reaches a Poissonian value for any barrier
height.
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a b s t r a c t

We investigate the shot noise properties in a monolayer graphene superlattice modulated by N parallel
ferromagnets deposited on a dielectric layer. It is found that for the antiparallel magnetization config-
uration or when magnetic field is zero the new Dirac-like point appears in graphene superlattice. The
transport is almost forbidden at this new Dirac-like point, and the Fano factor reaches its maximum value
1/3. In the parallel magnetization configuration as the number of magnetic barriers increases, the shot
noise increases. In this case, the transmission can be blocked by the magnetic–electric barrier and the
Fano factor approaches 1, which is dramatically distinguishable from that in antiparallel alignment. The
results may be helpful to control the electron transport in graphene-based electronic devices.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, two-dimensional material tightly packed into a
monolayer honeycomb lattice of carbon atoms, which was syn-
thesized by Novoselov et al. in 2004 [1,2]. In low energy regime,
the quasiparticles in graphene close to the Dirac points (often
referred to as K and K‵) are described by the massless Dirac-like
equation. Such a peculiar band structure results in many unique
electronic properties, including the unconventional quantum Hall
effect [3], the nonzero conductivity at vanishing carrier

concentration [4,5], the reflectionless Klein tunneling [6], the sub-
Poissonian shot noise [7,8], special Andreev reflection [9], and
many others.

In 1970 the superlattice was proposed by Esaki and Tsu [10],
which attracted a great deal of researches over the past decades on
the transport properties of the superlattice [11–14]. Motivated by
the experimental realization of graphene superlattice [15–17],
electronic bandgap structures and transport properties in gra-
phene superlattice with electrostatic potential barrier was ex-
tensively investigated [18–23]. The transport properties in gra-
phene-based superlattice structure were first studied by Bai and
Zhang [18] the authors found that the conductivity of the gra-
phene superlattice depends on the superlattice structural para-
meters. The conductance of a disordered graphene superlattice
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was investigated in Ref. [19], and the authors found that the
conductance vanishes when the sample size becomes very large.
In Ref. [20], the spin transport properties of graphene superlattice
in the presence of Rashba spin–orbit interaction was studied and
found that the magnetoresistance ratio shows a strong depen-
dence on the number of barriers. To circumvent the Klein tun-
neling effect, it was suggested that a magnetic barrier can effec-
tively block Klein tunneling and achieve confinement for massless
Dirac fermions in graphene [24]. The required magnetic structures
in graphene can be realized by depositing ferromagnetic stripes on
the graphene layer [25,26]. There also exist many theoretical
works which were studied transport properties through magnetic
barriers and magnetic superlattice in graphene [27–34].

Shot noise originates from the fluctuation in the electrical
signal due to the discreteness of electron charges. In addition, it is
well known that shot noise is useful to obtain information of
transmission that is not available through the standard con-
ductance measurements [35,36]. The shot noise is characterized by
the Fano factor F being the ratio of the noise power to mean cur-
rent [37]. Recently, some papers focus on the shot noise in semi-
conductor superlattices and graphene based nano-structures both
theoretically and experimentally [7,8,38–51]. Cheianov and Falko
studied the unusual Fano factor in the graphene n–p junctions
[38]. Tworzydlo et al. predicted that the Fano factor for a wide and
short sample has a maximum value of 1/3 at the Dirac point, which
is 1/3 of Poissonian value [39]. This is the same value as in the
diffusive metals. Zhu and Guo investigated shot noise in the gra-
phene-based double barriers and found that the shot noise with
the Fano factor equal to 1/3 occurs at the Dirac point [40]. The
transport properties and shot noise in Thue–Morse sequence
graphene superlattice were investigated by Huang et al. [42], the
authors found that the Fano factor has a maximum close to 1/3 in
the vicinity of Dirac point. Also, experimental results of shot noise
measurement in graphene structures are in good agreement with
the theoretical predication [7,52]. It is generally accepted that the
sub-Poisson shot noise of graphene originated from the peculiar
band structure at the low energy regime near the Dirac point. In
other words, the quasiparticles in graphene are described by the
massless Dirac-like equation rather than the Schröedinger
equation.

The purpose of this paper is to study the shot noise in magnetic
field modulated graphene superlattice by using the transfer matrix
method. The effect of the number of barriers on the Fano factor is
taken into account. We show that for the antiparallel magnetiza-
tion configuration or when magnetic field is zero the Fano factor
reaches its maximum value 1/3, whereas for the parallel magne-
tization configuration it can be approached to 1 due to the
transmission blockage. In particular, our probe shows that for the
parallel magnetization and when the number of barriers, N, are
larger than 50 the Fano factor reaches a Poissonian value, which is
dramatically distinguishable from the semiconductor superlattice.
In the semiconductor superlattice when all the barriers are iden-
tical, in the N-1 limit the shot noise approach 1/3 of the Pois-
sonian value [50,51]. The rest of the paper is organized as follows;
our method and formalism are described in the next section. In
Section 3 we present and discuss our results, and finally we end
the paper with a brief conclusion.

2. Model and theory

In this paper, we consider two kinds of systems. In both cases, a
monolayer graphene covered by a thin insulating layer and parallel
ferromagnetic (FM) stripes are deposited on top of the dielectric
layer [25,26]. Further, a gate voltage is applied to the FM stripes in
order to produce an electrostatic barrier. In both cases, FM stripes

have magnetization perpendicular to the graphene in the x–y
plane. In the first and the second cases FM stripes with magneti-
zation parallel (P) or antiparallel (AP) perpendicular to the gra-
phene in the x–y plane are deposited on top of the dielectric layer,
respectively. As known, the magnetic field generated by such a
strip is non-uniform and depends on both its size and the distance
to the studied 2D system. However, for sufficiently thin ferro-
magnetic strip, it is almost constant under the strip and vanishes
outside this region [53]. Thus, the systems under consideration are
graphene superlattice modulated by magnetic field. The magnetic
field B x( ) emerging from the FM stripes will influence locally the
motion of Dirac electrons in the graphene x–y plane and is as-
sumed to be homogeneous in the y direction, but varies along the
x direction. The schematic of the structures is shown in Fig. 1.
According to the above discussion, the potential profile of the
system consists of a sequence of N electrostatic barriers of equal
height U0 and width b, modulated by N magnetic barriers. Where,
electrostatic and magnetic barriers separated by well regions
(nonmagnetic regions) of width w.

Here, the effects of electron–electron and electron–phonon
interactions are neglected by considering a single electron trans-
mission at zero temperature. Therefore, the charge carriers in our
model are described by the following Hamiltonian

H H V x I , 10
^ = ^ + ( )^ ( )

in which,

H v p eA. , 2F0 σ^ = → (→ +
→

) ( )

⎧⎨⎩V x
U in barrier,

0 in well, 3

0( ) =
( )

where p p p,x x
→ = ( ) is the quasiparticle momentum (setting 1ℏ = ),

,x xσ σ σ→ = ( ) is the 2D Pauli matrix, v 10F
6≈ ms 1− is the Fermi

Fig. 1. (a) Schematic diagram of the model, the monolayer graphene covered by a
thin insulating layer, parallel FM stripes are deposited on top of the insulating layer.
Each FM stripe has a rectangular cross section and a magnetization parallel to the z
axis. The gate voltage Vg applied on the FM stripes induces potential barrier in the
graphene sheet. The FM stripes have magnetization parallel (P) or antiparallel (AP)
to the z axis. (b) Magnetic field profile B(x) (red dashed line), corresponding vector
potential A(x) (blue solid line) and the electrostatic potential U0 (green dotted line)
for the P alignment. (c) The same as in (b) but for the AP alignment.
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