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H I G H L I G H T S

� The persistent current for the Harper model is not metallic in the metallic regime.
� This stems from the nature of central band states for the staggered case.
� When the superlattice is not commensurate the persistent current is insulating.
� Even in the metallic regime Harper model may exhibit insulating current.
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a b s t r a c t

In this paper we study the persistent current (PC) of a staggered Harper model, close to the half-filling.
The Harper model is different than other one dimensional disordered systems which are always loca-
lized, since it is a quasi-periodic system with correlated disorder resulting in the fact that it can be in the
metallic regime. Nevertheless, the PC for a wide range of parameters of the Harper model does not show
typical metallic behavior, although the system is in the metallic regime. This is a result of the nature of
the central band states, which are a hybridization of Gaussian states localized in superlattice points.
When the superlattice is not commensurate with the system length, the PC behaves as an insulator. Thus
even in the metallic regime a typical finite Harper model may exhibit a PC expected from an insulator.

& 2015 Elsevier B.V. All rights reserved.

In the last decade, quasi-periodic one-dimensional (1D) po-
tential, also known as the Aubry–Andre–Harper (for short Harper)
model [1–11], has garnered much interest. The main reason for
this interest is that it is the disorder of choice for cold atoms, since
it may be created by the superposition of two incommensurate
periodic potentials [5–9]. Contrary to white noise disordered sys-
tems which are always localized for 1D [12], the Harper model
shows a 1D metal–insulator (Anderson) transition for non-inter-
acting particles as a function of the strength of the potential [3–
7,10,11]. This has been demonstrated experimentally in cold atoms
[5–7], as well as for optical systems [10,11]. Additional effort has
gone into understanding the influence of electron–electron inter-
actions on this metal–insulator transition [13–15], and on the
many-body localization in these quasiperiodic system [16,17]. The
Harper model also exhibits topological edge state [18,19], and
show counterintuitive behavior of the compressibility [20,21].

The current carried by the ground state of a ring threaded by a
magnetic flux is called the persistent current (PC) [22]. In the
presence of elastic scatterers (disorder), the persistent current is
suppressed [23–26]. In the diffusive regime, on the average it is

suppressed by a power law of the circumference of the ring L,
while in the localized regime it suppressed exponentially by

Lexp /ζ( − ), where ζ is the localization length. Since for non-cor-
related (white noise) disorder, all states of a 1D system are loca-
lized, one expects that for 1D systems the averaged PC is always
suppressed exponentially.

The PC is a very effective way to evaluate the sensitivity of the
system to boundary conditions, i.e., the conductance of the system
[27,28], and therefore a great way to identify whether your system
is metallic or localized. Thus, naively, we would expect that the PC
for the Harper model in the metallic regime (i.e., not too strong
on-site potentials) will on the average be only weakly suppressed
by the potential. Here, we will show that the persistent current of
the Harper model can exhibit a rather intricate behavior, which
can skew the simple picture presented above.

In this paper, we study the PC of a Harper model of spinless
fermions on a ring threaded by a magnetic flux. This is a tight-
binding model in which the on-site potential is spatially modu-
lated with an irrational frequency. We would focus here on irra-
tional frequencies which their modulus is close to half. This
corresponds to a fast (two site) modulation with a slow envelope.
These frequencies exhibit an increase of the compressibility when
the electron–electron interactions are increased, opposite to the
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influence of interactions in regular disordered systems [20,21].
Here we will show that for this range of frequencies close to half-
filling, the PC shows a non-monotonous dependence on the sys-
tems size, where for most values of L the PC is strongly suppressed.

The tight-binding Harper model Hamiltonian for spinless fer-
mions on a ring threaded by a magnetic flux is
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where cĵ is the single particle annihilation operator on site j, t is a
real hopping amplitude. The magnetic flux is denoted by φ, and φ0

is the quantum flux quanta hc e/0φ = . The strength of the on-site
potential is controlled by 0λ > . The on-site potential is modulated
by a frequency b, and ϕ is an arbitrary phase factor. It should be
clear that since we are interested in a ring, ϕ is irrelevant and will
be ignored through the rest of this paper. We will be interested in
the metallic regime of the model, i.e. t2λ < . The irrational fre-
quency may to written as b 1/2= + + ϵ, where ϵ is irrational.
Therefore, we can write the on-site potential as

bj j j j jcos 2 cos 2 2 1 cos 2 2jπ π π π π( ) = ( + + ϵ ) = ( − ) ( ϵ ) ( )

When a 1/2ϵ ̂ª¡ the system is called an almost staggered Harper
model for which the fast frequency of the 1 j( − ) term is modu-
lated by the slow frequency, ϵ, of the jcos 2π( ϵ ) term. In the almost
staggered case the energy spectrum of system shows unique fea-
tures such as a central band that is separated from the other bands
by a large gap, of order λ, as can be seen in Fig. 1. Also the two
bands sandwiching the central band show similar features, i.e., a
rather narrow (flat) band and a large gap to the next band.
Changing the length of the sample length from L¼900 to L¼1000
does not change its gross features, although some difference in the
energies of the edge states in the gaps is apparent. As detailed in
Ref. [20], for a 1ϵ ̂ª¡ , there are L L2n = |ϵ| states in the central band,
corresponding to the number of intersections with zero of the
slow modulation envelope, which occur at jcos 2 0nπ( ϵ ) = . These
valleys are shown in Fig. 1 for a smaller system (L¼200) in order
not to clutter the figure. The frequency of the envelope is ϵ and the

distance between two consecutive valleys is half the period, i.e.,
the distance is 1/2|ϵ|. For example, for the systems depicted in
Fig. 1, b 30 5.477226= = , and therefore 0.022774ϵ = − , resulting
in L 50n ∼ for L¼900 and L 54.55n ∼ for L¼1000. While for the
L¼200 case shown in Fig. 2 L 9.1n ∼ . Indeed, the 9 valley states are
clearly seen, as well as the fact that the valley positions are not
exactly commensurate.

Thus, to first approximation, there is a superlattice of valleys at
points jn, with n L1, , n= … , each with a zero-energy state, n| 〉, cen-
tered around j jn= . These states can be written as Gaussians falling

off at a length scale of t/ξ πλ= |ϵ| . The central band eigenfunctions
are composed of the hybridization of these localized state. Since their
overlap is very small, they correspond to the Wannier decomposition
of the central band. For periodic boundary conditions, and when
L Ln n= ⌊ ⌋, the eigenstates of the central band are plane waves com-

posed of the valley Gaussian, k L S e nn n
L

n
ikn1/2

1
n| 〉 = ∑ | 〉−
= , where

S n2 cos /2 /4 , 1, 1, 1, 1, 1, 1,n ( )π π= − = … − − … . The spectrum

E k t k2 coscentral ( ) = − ¯ [20], where k m L2 / nπ= (m 0, 1, 2,= ± ± …)

and the effective hopping t texp / 4 2 exp2 2 2 (ξ ξ¯ ≈ ( − ( ϵ) ) (−

1/4 sinh 4 exp2 2 1 2 2 2 )ξ ξ λ π ξ) [( |ϵ|) ] − ( − ϵ )− . Thus, the central band

spectrum is expected to show a degeneracy since
E k E kcentral central( ) = ( − ). A closer look at this issue reveals that if the
system is not exactly periodic, the degeneracy will be broken by the
non-perfect periodicity. One may think of the effect of the non-per-
fect periodicity as an impurity at the region of the non-periodicity
(i.e., around n¼0). For low-lying states in the central band, the im-
purity acts as a hard-wall, leading to low-lying states of the form
k L kn2/ sin| ˜〉 = ( ˜ ), with k m L/ nπ˜ = (m 0, 1, 2,= …), and eigenvalues

E k t k2 coscentral ( ˜) = − ¯ ˜ . Thus, as can be seen in the inset of Fig. 1, for
the low-lying states in the central band the degeneracy in the eigen-
values is lost, both for the almost periodic case (L¼900), as for the
non-periodic one (L¼1000). The low-lying wave functions are de-
picted in the upper panel of Fig. 3. For comparison the wave functions
of a clean ring of the same length, with a single impurity at n¼0
(weak for L¼900, strong for L¼1000), are drawn. For the clean sys-
tem the ground state wave function corresponds to a half-sine, while
the first excited state to a sine. This behavior is not very sensitive to
the impurity strength. A similar situation can be seen for the Harper
model, where the half-sine and sine envelopes are composed of the
Gaussian superlattice states at points jn. As expected for the low-lying
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Fig. 1. The energy spectrums of two different length, one with L¼900 (black
symbols) and the other with L¼1000 (red symbols), for both length b 30= and

1λ = . The superlattice length correspond to L 50n ∼ for L¼900 and L 54.55n ∼ for
L¼1000. The gross features of the spectrum (except for the edge states appearing
in the gaps) do not essentially change between the commensurate and in-
commensurate length. Inset: A zoom into the central band for both length. Note the
change in the scale of the y axis. Here there is a clear difference between the
commensurate and incommensurate length. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. The on-site potential of the Harper model for L¼200, with 1λ = and
b 30= . The envelope corresponds to ncos 2π( ϵ ). The distance between the valleys
is 1/2ϵ. The number of valleys corresponds to L L2n = |ϵ| which for the system de-
picted in this figure corresponds to L 9.1n ∼ , which is a slightly incommensurate
case.
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