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HIGHLIGHTS

e We study non-equilibrium electron transport through a quantum dot coupled to metallic leads.

e Equation of motion approach in which Green functions is differentiated over both time variables is used.

e We obtain the resonance Kondo state in the particle-hole symmetric case and in the asymmetric cases.

e We calculate the density of the states of quantum dot and the differential conductance as a function of bias voltage.
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We study non-equilibrium electron transport through a quantum dot coupled to metallic leads. We use
an alternative equation of motion approach in which we calculate the retarded Green function of the
impurity by differentiating Green functions over both time variables. Such an approach allows us to
obtain the resonance Kondo state in the particle-hole symmetric case and in the asymmetric cases. We
apply this technique for calculating the density of the states of quantum dot and the differential con-
ductance as a function of bias voltage. The differential conductance dependence on temperature and on
Coulomb interaction is also calculated.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Electronic transport through quantum dots (QD) or single
electron transistors (SET) has recently been widely investigated on
both the experimental [1-5] and theoretical sides [6-12]. It has a
large potential of applications in modern electronics (spintronic)
based on nanoscopic structures. Quantum dot systems are ex-
cellent systems for studying the Kondo effect. They possess a re-
sonance peak at the Fermi energy in the dot density of states and a
zero-bias maximum in differential conductance.

In theoretical analysis the structure of a single quantum dot
connected with two leads is well described by the single impurity
Anderson model (SIAM) [13]. This model has an exact solution in
the case of the noninteracting system (U = 0). At finite values of
Coulomb interaction U there is no such solution and there are only
approximate results. The SIAM model was solved approximately
by different numerical techniques (e.g. quantum Monte Carlo [14],
numerical renormalization group [14-16]) and analytical
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techniques (e.g. second-order perturbation theory, modified per-
turbation theory [9,12], noncrossing approximation). To solve the
SIAM problem one can also use the equation of motion (EOM)
technique [6,7,10,11,17]. This technique relies on finding the re-
tarded Green function of the impurity, and requires the decoupling
scheme breaking the infinite set of Green function equations.
One of the broadly used EOM techniques [6,7,10,11,17] is the
decoupling scheme proposed by Lacroix [18]. This scheme was
based on the Heisenberg equations of motion with differentiation
over one time variable. There was a truncation in the chain of
equations at the second order in hybridization term. In the original
Lacroix work [18] there was an additional approximation of in-
finite Coulomb interaction (U= o). This approach allowed the
narrow peak localized on the Fermi level to be obtained, but its
width and height were too small resulting in an underestimation
of the Kondo temperature [19]. The Lacroix scheme was used for
quantum dots with infinite and finite Coulomb interaction. The
weak point of this approach, when used at finite U, is the wrong
result in the particle-hole symmetric case where Kondo peak
vanishes. In effect, the unitary limit for the linear conductance is
not reached [20]. Current flow in the symmetric case is small
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which disagrees with the experimental results showing a large
conductance [2]. Away from the symmetric case, where the Kondo
peak is small, the original EOM method does not fulfill the Fermi
liquid relations and in the result linear conductance has very small
values. In our report we develop an alternative EOM approach in
which we calculate the retarded Green function of the impurity by
differentiating Green functions over both time variables. This dif-
fers from the commonly used EOM solution by Lacroix [18] where
the time derivative was taken only over primary time variable. Our
approach allows us to obtain good results in the EOM method not
only in the particle-hole symmetric case but also in the asym-
metric cases.

The proposed method will be used for systems in the equili-
brium state, as well as for systems with the finite bias voltage V
applied between the leads coupled to the QD. At the finite bias
voltage we calculate the electric current flowing through the dot
and the differential conductance dI/dV dependence on tempera-
ture for different energy levels of the quantum dot and different
Coulomb repulsions. This quantity is observed experimentally. In
the particle-hole symmetric case due to the Kondo effect the
differential conductance reaches unitary limit [20]. Initial experi-
ments with quantum dots did not support this result. The unitary
limit of Kondo effect was demonstrated after using semiconduct-
ing quantum dots [1].

The paper is organized as follows: in Section 2 we develop our
approach to analyze the single impurity Anderson model. Using a
modified EOM approach we obtain expressions for the self-energy
and Green function in the presence of Coulomb repulsion. In
Section 3 we present numerical results based on our approach.
From the calculated dot Green function we obtain the density of
states on the quantum dot and the differential conductance dI/dV
as a function of the bias voltage. Dependence of the differential
conductance dI/dV on temperature and on Coulomb interaction is
also analyzed. It is shown that the increase of temperature reduces
the value of the differential conductance dI/dV. At zero tempera-
ture and in the particle-hole symmetric case we obtain a unitary
limit for conductance. Our results are compared with the experi-
ment and previous calculations. Final conclusions are given in
Section 4.

2. The model

Using the Anderson-type Hamiltonian we analyze the system
that is build out of quantum dot connected to two metallic leads.
The Hamiltonian of this model has the form

H= Z & ﬁdo’ + UﬁdT ﬁdl + Z (gk(l - Ml)ﬁka(r
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where d}(d,) are the creation (annihilation) operators for the dot
electron with spin o, cf,, (G, ) are the creation (annihilation) op-
erators for the conduction lead electron, a = L, R correspond to the
left and right leads, &, is the energy dispersion of a lead, y is the
chemical potential of a lead, & is the dot energy, U is the on-site
Coulomb interaction between electrons on the dot, and {, is the
coupling between the « lead and the dot.

In our analysis we will use the Green functions method and the
equation of motion technique. In the case of non-equilibrium si-
tuation the retarded, advanced, and the distribution Green func-
tions have to be calculated. The EOM for Green functions was
usually obtained by differentiation over primary time (t). For the
retarded GF we have
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and for the distribution Green function we have
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After Fourier transform these expressions become the follow-
ing equations:
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which are the commonly used equations of motion form (see e.g.
[6,7,10,11,17,18]). The deficiency of this approach is the lack of the
Kondo resonance on the Fermi energy and unfulfilling the unitary
limit for conductance [20] in the particle-hole symmetry case. Out
of the particle-hole symmetric case we obtain a narrow Kondo
resonance peak, whose height and width are small [19] resulting
in an underestimation of Kondo temperature. To solve this
problem the authors [19,21] used equations of motion at higher
orders for hopping integral. Roermund and co-workers [21]
applying the fourth order equation obtained the Kondo resonance
no longer vanishing in the particle-hole symmetric case but the
unitary limit was still not fulfilled.

In this paper we will use the alternative EOM approach based
on the Heisenberg equation which includes differentiating over
the second time (t’), resulting in EOM of the following form [22]:
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Applying Egs. (4) and (5) to the noninteracting case one can
obtain the exact expression for self-energy. After including Cou-
lomb interaction on the dot there is no exact solution for the self-
energy and one has to construct an appropriate approximate so-
lution. Frequently used Ng approximation [23] allows us to replace
the distribution Green function by the retarded Green function.

Further on we will use the notation for the Green functions:
Gis () = ({d,; d)). Using in Eq. (4) the Hamiltonian (1) and fol-
lowing the method of Kuzemsky [22], (Gérski and Mizia [24]), we
obtain:
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with  being a positive infinitesimal real number and A(e) the
hybridization coupling defined as
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In further analysis we will assume that the hybridization cou-
pling is the same for each electrode (4; (¢) = 4 (¢)) and that it is
energy independent. The asymmetric coupling with electrodes
was analyzed by Krawiec and Wysokinski [11]. In addition we will
assume that the hybridization coupling is the unit of energy,
A(e) = const = 1.

To solve Eq. (8) we have to write the EOM for a higher order
Green function (((ly_, — N4—o )d,; d})). For this function we use
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