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H I G H L I G H T S

� Resonances substantially affect the spin polarization of the current.
� Localized spin–orbit interaction and resonances generate 0.5 conductance plateau.
� Significant spin polarization arises even in the one-electron approach.
� In the presence of resonances, the polarization increases due to the side voltage.
� We explain why 0.5 plateau appears only in the limited range of side gate values.
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a b s t r a c t

We study spin polarization and conductance of the asymmetric quantum point contact. We consider both
Rashba coupling and lateral spin–orbit interaction induced by laterally asymmetric confinement po-
tential. We show that in longitudinally symmetric quantum point contact, the spin polarization is not
accompanied by the appearance of the conductance plateau at G0.5 0 G e h2 /0

2( = ). In longitudinally
asymmetric quantum point contact the above plateau arises due to the presence of resonant states
within the using one-electron approximation. An explanation of the experimental fact that the plateau
exists only for a limited range of variation of the gate voltage is given.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spintronics, in which widely used both charge and spin of
electrons, is the subject of great interest in the last one or two
decades. The use of the spin degrees of freedom opens up the
possibility of creating of very small and extremely fast devices
with low power consumption. The main goal of spintronics is to
create efficient spin valve devices controlling electric and spin
currents. Ferromagnetic materials embedded in the device struc-
ture are usually used as a source of polarized electrons and for
detecting the spin polarization. The control of the spin polarization
can be used both external and internal effective magnetic fields
due to the spin–orbit interaction (SOI) of electrons. Because of the
high miniaturization of modern electronic devices, the use of

ferromagnetic contacts and external magnetic fields has many
undesirable side effects. Considerable efforts have been made in
the last decade to find ways to create and control a spin-polarized
current by purely electrical methods, mainly by the SOI [1–4].
Symmetry features are very important for the SOI [5]. In particular,
in the case of asymmetric confinement of a two-dimensional
electron gas in the perpendicular direction, this contribution is
known as the Rashba interaction [6–9]. In a laterally asymmetric
quantum point contact (LAQPC), an additional contribution to the
SOI arises due to the lateral spin–orbit coupling (LSOC). In quasi-
one-dimensional quantum wires this contribution was considered
[10–12] in the study of the separation of electrons with different
spins along the edges of the channel. Recently, in experimental
studies of conductance of the LAQPC in the absence of an external
magnetic field, the conductance plateau at G G G e h0.5 2 /0 0

2≈ ( = )
was found [13–17]. It is considered that the 0.5-structure is a
testament to the high spin polarization of the current in the LAQPC
[13,18,19]. However, we show [20] that this anomaly of the
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conductance may be due to multichannel interference even
without taking into account the SOI. Note that the one-electron
calculation of the spin polarization current considering the LSOC
due to the asymmetry of the transverse confinement potential
does not reproduce the 0.5-conductance plateau [21]. The con-
ductance modeling within the nonequilibrium Green's function
formalism in the case of the LAQPC showed [22,23] that almost
complete spin polarization is achieved when the following con-
ditions hold: (a) the presence of an asymmetry transverse con-
finement, (b) the existence of the LSOC, and (c) the presence of the
strong electron–electron interaction [13,23,24]. The condition
(c) seems to be insufficiently substantiated because the authors
obtained the 0.5 plateau of the conductance curve by the adjust-
ment of the electron–electron interaction strength [23,25].

In this paper, we once again consider the spin polarization
taking into account the Rashba interaction and a LSOC which are
localized in a LAQPC region. We show that the presence of re-
sonance electronic states associated with the longitudinal asym-
metry of a QPC allows us to obtain a high degree of spin polar-
ization and also the 0.5 conductance plateau. We obtained a non-
monotonic dependence of the maximum spin polarization on the
potential difference between the side gates. This explains the ex-
perimentally observed [14–16,24] disappearance of the 0.5 struc-
ture with increasing of the asymmetry of the lateral confinement.

The paper is organized as follows. In Section 2 the model and
the calculation method of the spin-dependent conductance are
described. Spin polarization and conductance of the longitudinally
symmetric contact are discussed in Section 3. The effect of the
violation of the longitudinal symmetry on spin polarization and
conductance is investigated in Section 4. The obtained results are
summarized in Section 5.

2. Model and calculation method

We consider an infinite along the x-axis quasi-one-dimensional
quantum wire in the plane xy, with a LAQPC which is localized at
x anv| |≦ where a is the lattice constant of the square lattice. Suppose
that the Rashba interaction and LSOC are generated by perpendi-
cular (along the z-axis) and lateral (along the y-axis), respectively,
external gate voltage, and are localized in the LAQPC region. In the
tight-binding approach, the Hamiltonian of the system reads
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Here Cn m, ,
^

σ
†

and Cn m, ,
^

σ are creation and annihilation operators of an
electron at the site (n,m) with spin s (s¼1 and s¼2 corresponds
to 1, 0 T( ) and 0, 1 T( ) , respectively), and M is the number of atomic
layers along the axis y. We assume that the energy ϵ at the site and
the hopping integral t 0> do not depend on the site number.
Further, ϵ is taken as the energy origin.

The Hermitian Rashba term [20] has the form
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where t a/2so α= for n n 1v| | ≤ − and t 0so = otherwise, α is the
Rashba parameter, and , ,x y zσ σ σ σ^ = (^ ^ ^ ) are Pauli matrices.

In the tight-binding approach, the contribution to the Ha-
miltonian corresponding to LSOC reads [20]
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where a/2soτ β= (β is a LSOC parameter depending on contact
material). The term corresponding to the side gates potential has
the form
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Values of the potential V n m,( ) and its partial derivatives V n m,x ( )′

and V n m,y ( )′ at the site (n,m) in our model are determined by the
expression [20]

V x y V V V x y V V x y V, ; , , ; , ; 6g
s

g
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where Vg is the potential in the QPC and VΔ corresponds to the
side gate. The potential V x y V, ;s

g( )( ) is even in y, it is different from
zero only in the region x anv| | ≤ , and it is defined by a function of
the saddle type [26,27,20]. We distinguish, as in [27], three regions
in the LAQPC with the help of parameters Xp and Lp p 1, 2, 3( = );
the region number is N x p( ) = if x X L /2p p| − | ≤ . According to [27]
we put
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Here yΘ ( ) is the Heaviside function ( y 1Θ ( ) = for y 0> and
y 0Θ ( ) = otherwise) and y a M 1 /20 = ( + ) is the coordinate of the

middle layer. Parameters LN, XN, dN and η are the same as in
[20,27].

Asymmetric with respect to y contribution VΔ by analogy with
the condenser field is modeled by the expression [20]
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where n 0γ γ( ) = for x anv| | ≤ and n 0γ ( ) = otherwise. The quantity γ0
depends on the materials of the device and geometry of the
electrodes.

Denote by t
l l, ′

′σσ the amplitudes of an electron scattering from the
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