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H I G H L I G H T S

� An electron wave is scattered into different channels by the resonator openings.
� Some of the channels can be resonant at a given energy.
� Resonances and resonant channels are linked to the closed resonator eigenvalues.
� Resonance parameters can be found even in the case of coinciding resonances.
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a b s t r a c t

Electron ballistic transport in 2D quantum waveguide with two narrowings is considered. For long-
itudinal electron motion such narrowings play the role of effective potential barriers and conditions for
resonant tunneling arise. If the electron energy is sufficiently high the electron wave can scatter into
different quantum states (transverse channels of the leads) which results in complicated E-dependence
of the scattering amplitudes. Numerical simulations have shown that the scattering amplitudes re-
sonances are of Fano type. The form of the transmission probability curve is conditioned by interference
of the quantum states into which the electron wave is scattered by the narrowings. The suggested in-
terference model makes possible to find the resonance parameters with high precision and to link them
to the closed resonator eigenvalues.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Devices based on electron resonant tunneling can be used as
field effect transistors [1], resonant tunneling diodes [2], lasers [3],
and qubits [4]. Potential barriers forming a quantum resonator are
usually produced by dielectric layers or by vacuum intervals be-
tween linking electrodes and a resonator (an “electrode – quan-
tum dot – electrode” system). In both cases, incoherent electron
scattering by the interfaces essentially decreases the resonator
quality factor. However, the role of resonance structure can also be
given to a quantum wire of variable cross-section. A waveguide
narrowing is an effective potential barrier for longitudinal electron
motion along a waveguide. The part of a waveguide between two
narrowings becomes a resonator. Due to the absence of interfaces,
there is no incoherent electron scattering in such a system.
Quantum resonators of that kind can find applications as elements

of nanoelectronics devices and provide some advantages in regard
to operation properties and production technology.

Asymptotic theory of electron resonant tunneling in three-di-
mensional quantum waveguides with narrowings was developed
in [5]; a ratio of the diameter of a narrowing to that of a waveguide
was chosen as a small parameter ε for the asymptotics. Numerical
simulation of resonant tunneling in two-dimensional waveguides
in comparison with asymptotic description was presented in [6].
The impact of a magnetic field on resonant tunneling was studied
in [7,8]. These papers were based on approximate computation of
the waveguide scattering matrix and on asymptotic analysis of the
electron wave function as 0ε → . In [9], numerical simulation of
electron resonant tunneling was fulfilled by approximate calcula-
tion of the waveguide R-matrix in a wide energy range.

In papers [5–8], resonant tunneling was discussed for electrons
with energy between the first and the second thresholds, that is,
for electrons of small energy. (Recall that the threshold energy
values of a waveguide form a positive increasing sequence with
limit at +∞.) To analyze possibilities of using waveguides of vari-
able cross-section in nanoelectronics, it is desirable to investigate
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resonant tunneling in a wider energy range.
The total energy E of an electron moving in a cylindrical wave-

guide can be represented as E E E= +⊥ ∥, E⊥ being the (quantized)
transverse motion energy and E∥ the longitudinal motion energy. In

the dimensionless form, E k2= and E n n D/2 2 2π( ) =⊥ , where k is the
electron wave number, n is one of the positive integers such that
E n E( ) ≤⊥ , and D is the waveguide width (if the waveguide is a strip).
The number n is called the electron transverse quantum number
and E n( )⊥ is the n-th threshold. We will say that an electron is in the
n-state, if its transverse quantum number is equal to n.

In the present paper, we consider multi-channel resonant
tunneling. An electron wave of energy E with transverse quantum
number n, incident on a resonator, is transmitted through the re-
sonator and arises with transverse number k; shortly, the wave
passes from state n to state k. We denote by Tnk(E) the transmis-
sion coefficient of the wave, calculate the dependence E T Enk→ ( )
by computing the scattering matrix S(E), and obtain
T E S Enk nk

2( ) = | ( )| , where Snk(E) is the entry of S(E). The curve
E T Enk→ ( ) can be quite complicated and not always easily inter-
preted. To explain the curve, we consider Snk(E) as a probability
amplitude and represent it in the form S E A Enk s nsk( ) = ∑ ( ), where
Ansk(E) is the probability amplitude of the passage from n to k
through an intermediate state s; the summation is over all inter-
mediate states (cf. [10]).

Let G ,1 2ε ε( ) be a waveguide with two narrowings and let G0 be
the closed resonator, that is, the bounded part of the limit wave-
guide G 0, 0( ); generally, the resonator form may be arbitrary. We
denote by k k1

2
2
2≤ ≤ ⋯ the eigenvalues of the closed resonator.

Then the resonant energies of the waveguide G ,1 2ε ε( ) form the
sequence ERe 1, ERe ,2 …, where E E, ,1 2 … can be viewed as the

“perturbed” k k, ,1
2

2
2 … and EIm 0j < for all j 1, 2,= … . The ampli-

tude Ansk admits the representation
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with continuous functions E H Enk
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where H Enk r( ) and R Enk r( ) are constant. We take the function Enk( )
as an approximation to the calculated S Enk

2| ( )| and find the con-
stants H Enk r( ), R Enk r( ), and Er by the method of least squares.

2. Closed resonator

A necessary condition of electron resonant tunneling consists
in proximity of the incident electron energy E to one of the ei-
genenergies kev

2 of the closed resonator (Fig. 1). Table 1 shows the
calculated values of kev

2 and the figures of the corresponding
eigenfunctions.

For the rectangular resonator with unit width (i.e., D¼1) and
length L,

k n m L/ , 1ev
2 2 2 2 2 2π π= + ( )

where n and m are transversal and longitudinal quantum num-
bers. Since the shape of the resonator is close to rectangular, the
eigenvalues are well approximated by the expression (1) with L
replaced by Leff . For the resonator with angle 0.9ω π= at the vertex
and with length L¼1.5, the value of Leff is approximately equal to
1.45 for n¼1 and to 1.42 for n 1> .

The disparity between the calculated eigenvalues and approx-
imations by formula (1) is less than 0.5%. Note that such an ac-
curacy is achieved in spite of the significant difference between
the considered eigenfunctions and those for the rectangular re-
sonator (see the figures in Table 1).

3. The method for computing scattering matrix

We now describe a calculation scheme for a scattering matrix
based on the method presented in [11]. The energy E of an electron
moving in a cylindrical waveguide can be represented in the form
E E E= +⊥ ∥, where E⊥ and E∥ are transversal and longitudinal com-
ponents, respectively. The values of E⊥ are quantized. In the sim-

D
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L
ω

Fig. 1. The resonator.

Table 1
Eigenvalues and eigenfunctions of the closed resonator.
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