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a b s t r a c t

We study the effects of a composition gradient and of a non-vanishing heat flux on the phase velocity of
thermal waves along a graded system. We take into account non-local and non-linear effects by applying
a generalized heat transport equation. We compare the results for high-frequency and low-frequency
waves. For low frequency, we discuss the conditions in which thermal waves may propagate in Si Gex x1−

and Bi Sb Tex x1 2 3( )− systems. For high frequency, we discuss the influence of the relaxation of the flux of
the heat flux on the heat wave propagation.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graded materials are inhomogeneous materials, layered or
continuous, which are increasingly used in technology, in such a
way that the change of a material property with temperature may
be compensated by its change with composition, in order to
achieve optimization of some process [1–8]. A usual example is the
alloy Si Gex x1− , which has been much studied in semiconductor
physics to engineer heat or current transport [9–13]. Other ex-
amples arise in thermoelectricity, where the maximization of ZT,
with Z being the figure of merit and T being the absolute tem-
perature, is important to optimize the efficiency of energy con-
version from heat to electricity [14–18]. The figure of merit is
defined as Z S /2σ λ= , S being the Seebeck coefficient, s the elec-
trical conductivity and λ the thermal conductivity. Besides the
difficulty in finding materials with high enough ZT, an additional
difficulty is its variation with temperature, because usually s in-
creases with T while S decreases, in such a way that ZT has a
maximum in a relatively narrow range of temperatures. Thus, the
use of graded systems is very natural, namely to optimize ZT not
only at one point, but along the whole system.

The thermoelectric materials that are most used for energy
conversion are Bi Te2 3, Sb Te2 3 and PbTe and/or their alloys
Bi Te Pbx x x2 2 3 2− − and Bi Sbx x1 2( )− Te3 [1,10], with x changing along the
longitudinal direction z. The alloys with x ranging in the interval

0, 1[ ], as, for instance, Bi Te2 3 for x¼0, and PbTe or Sb Te2 3, for x¼1,
are of special interest, as PbTe has a maximum of ZT around
T¼400 °C, Bi Te2 3 around 200 °C, and Sb Te2 3 around T¼130 °C.
Consequently, their combination along a system allows us to im-
prove the global efficiency of the energy conversion [19–21].

In this work we consider the practical consequences of the
inhomogeneity of the composition on the evolution equation for
the heat flux in graded materials, which allows us to obtain the
temperature distribution along the system. This information is
relevant for the optimization of the thermoelectric energy con-
version. Furthermore, we explore the consequences of such evo-
lution equation on thermal wave propagation, in order to infer
which information could be obtained on the system by using low-
frequency and high-frequency thermal waves as exploration
technique [22]. To achieve that task, it is possible to take into ac-
count the influence of x∇ and, in the case of systems which are out
of equilibrium, also of the heat flux due to a non vanishing su-
perimposed heat flux q0. The consequences of a non-monotonic
dependence of the thermal conductivity on x on the behaviour of
slow thermal waves are pointed out in Section 2. In Section 3, a
generalized equation for heat transport, incorporating non-local
and non-linear terms, is derived. Its consequences on the speed of
high-frequency heat waves are considered in Sections 4–6.

2. Heat waves in a graded system: Maxwell–Cattaneo approach

In this preliminary section, we use the Maxwell–Cattaneo
equation for the heat flux q as a model of generalized heat
transport equation yielding finite wave speed for high-frequency

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

http://dx.doi.org/10.1016/j.physe.2015.05.026
1386-9477/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: david.jou@uab.es (D. Jou),

isabellacarlomagno85@gmail.com (I. Carlomagno),
vito.cimmelli@unibas.it (V.A. Cimmelli).

Physica E 73 (2015) 242–249

www.sciencedirect.com/science/journal/13869477
www.elsevier.com/locate/physe
http://dx.doi.org/10.1016/j.physe.2015.05.026
http://dx.doi.org/10.1016/j.physe.2015.05.026
http://dx.doi.org/10.1016/j.physe.2015.05.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2015.05.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2015.05.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2015.05.026&domain=pdf
mailto:david.jou@uab.es
mailto:isabellacarlomagno85@gmail.com
mailto:vito.cimmelli@unibas.it
http://dx.doi.org/10.1016/j.physe.2015.05.026


heat waves, and we search the speed of thermal waves, in the
presence of a composition gradient x∇ and of an initial heat flux
q0. The Maxwell–Cattaneo equation is [23–25]

Tq q , 1τ λ̇ + = − ∇ ( )

with τ being the heat flux relaxation time. Combined with the
energy balance equation in the absence of external sources,
namely

u cT q, 2ρ ρ̇ = ̇ = − ∇· ( )

with u¼cT being specific internal energy, ρ mass density and c
specific heat per unit mass, one gets
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We explore the consequences of this equation on the heat wave
propagation, a topic of much interest in non-equilibrium ther-
modynamics [22–34].

2.1. Propagation along an equilibrium state (q 00 = )

We consider small-amplitude temperature perturbations
T T i texp0δ δ ω κζ= [ ( − )], with δT0 being a constant reference
temperature, ω the frequency of the perturbation and κ the
component of the wave-vector along z. First, we neglect the non-
linear term in T 2(∇ ) , because we consider propagation along an
equilibrium state. In such condition it is logical to suppose that

T(∇ ) is very small, in such a way that T 2(∇ ) may be considered
negligible. Then, by Eq. (3) one gets for the dispersion relation

Bi i 0, 42 2χκ κ ω τω− + ( − ) = ( )

with
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Thus, the phase speed

v Re/ , 6p ω κ≡ ( ) ( )

reads
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For B¼0, from Eq. (7) we get the classical expression of the phase
speed corresponding to Maxwell–Cattaneo equation, well-known
in the literature [24–26]. For B 0≠ and low-frequency waves

B4 2 2χτω( ⪡ ) we obtain
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Thus, the presence of a composition gradient yields a propagatory
character to low-frequency heat waves, which otherwise, would
proceed with speed v 2p χω= , vanishing for 0ω → .

Since B c x x1/ /ρ λ= ( )(∂ ∂ )∇ , it turns out that the phase speed is
positive (i.e., the speed will propagate to the right-hand side) for
positive gradient of λ. Moreover, the higher λ∇ , the higher vp, so
that the waves proceed faster in regions with higher in-
homogeneity in the thermal conductivity. This result could be also
interpreted in terms of the Le Châtelier–Braun principle [35], ac-
cording to which the system reacts against perturbations; in this
case, since heat diffuses faster in regions with high thermal con-
ductivity, going towards such direction will provide the most

efficient way to react against the perturbation. For ω → ∞,
in Eq. (7) one has

v
c

,
9
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which is the usual expression of high-frequency wave speed for
Maxwell–Cattaneo equation [23–26].

By Eq. (5) we also obtain the attenuation length
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For B 0≠ , and in the limit of low-frequency waves, the expression
above reduces to
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2.2. Propagation along a non-equilibrium steady state (q 00 ≠ )

In a non-equilibrium steady state, characterized by a non-
vanishing heat flux q0, the term T T

T
∇ ·∇λ∂

∂
is no longer negligible.

However, up to the first-order approximation in T∇ , it may be
linearized as Tq

T
2

0− ·∇
λ

λ∂
∂

. Then, Eq. (3) becomes
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From this expression one gets the dispersion relation still in the
form (4), with
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where q0 denotes the scalar value of q0. The phase speed vp is still
given by Eq. (7), with B given by this expression above. When
B 0≠ and 0ω → , it reduces to Eq. (8).

It is worth observing that B contains now both the contribu-
tions of x∇ and of q0. When q 00 = , one recovers Eq. (7). Finally, in
the high-frequency limit, Eq. (9) is recovered.

Thus, we conclude that in this model x∇ and q0 influence the
low-frequency speed but not the high-frequency speed.

2.3. Illustration in Si Gex x1− , and in Bi Sbx x1 2( )− Te3 alloys

Eq. (8) yields v xp c x
1= ∇
ρ

λ
ζ

∂
∂

. For many systems T x,λ ( ) is a non-

monotonic function of x because crystals with atoms with dif-
ferent atomic masses disperse phonons more intensely than
uniform crystals. Thus, the value of x/λ∂ ∂ may be positive or
negative. For instance, at T¼300 K, in the system Si Gex x1− ,

T x,λ ( ) has 300 148 W/m KSiλ ( ) = , 300 60 W/m KGeλ ( ) = and has a
minimum near x¼0.4 with 15 W/m KSi Ge0.4 0.6λ = [9], and in the
system Bi Sbx x1 2( )− Te3, T x,λ ( ) has Te 300 1.75 W/m KBi 32λ ( ) = ,

Te 300 1.70 W/m KSb 32λ ( ) = and has a minimum near x¼0.5 with
Bi Sb0.5 0.5 2( ) Te 0.2 W/m K3 = [19]. In Fig. 1 we plot a sketch of
them. For the alloy Si Gex x1− , for x between 0 and 0.4, x/ 0λ∂ ∂ < ,
and for x between 0.4 and 1, x/ 0λ∂ ∂ > . Then, the low-frequency
waves will propagate to the left-hand side (from Si Ge0.4 0.6 to Ge)
in the former case, and to the right-hand side (from Si Ge0.4 0.6 to
Si) in the latter case. These situations are sketched in Fig. 2(a).
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