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a b s t r a c t

We study a weakly disordered 2D electron gas with two bands and a spectral node within the weak-
localization approach and compare its results with those of Gaussian fluctuations around the self-con-
sistent Born approximation. The appearance of diffusive modes depends on the type of disorder. In
particular, we find for a random gap a diffusive mode only from ladder contributions, whereas for a
random scalar potential the diffusive mode is created by ladder and by maximally crossed contributions.
The ladder (maximally crossed) contributions correspond to fermionic (bosonic) Gaussian fluctuations.
We calculate the conductivity corrections from the density–density Kubo formula and find a good
agreement with the experimentally observed V-shape conductivity of graphene.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The weak-localization approach (WLA) has been a very popular
tool to estimate whether electronic states in a weakly disordered
system tend to localize or to delocalize on large scales. A central
result of the WLA is that on large scales there might be diffusion
due to one or more undamped modes. This has been studied in
great detail for conventional metals [1–3] and more recently for
graphene [4,5] and for the surface of topological insulators [6,7],
using a one-band projection for the two-band system. The ex-
istence of a diffusive mode, which is a necessary (but not a suffi-
cient) condition for metallic behavior, has been debated for the
one-band projected graphene model. It was found that either a
single diffusive channel exists [4,6,7] or no diffusion [5] in the
presence of generic disorder.

The WLA is usually based on an analysis of the current–current
Kubo conductivity [4]
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The main reason for this choice is that the current–current cor-
relation function j Gj GTr( )〈 〉μ μ

† is related to the action of the cor-

responding nonlinear sigma model t Q Q(1/2 ) Tr( )∫ ∂ ∂μ μ of the
matrix field Q [2], since the current operator jμ of a conventional
one-band model is proportional to the momentum operator i− ∂μ .
Therefore, the renormalization of the parameter t corresponds to
the renormalization of the current–current correlation function.

This relation, however, breaks down for Dirac fermions, where jμ is
proportional to the Pauli matrix σμ . For this reason it is not obvious
that the renormalization of the nonlinear sigma model is linked to
the renormalization of the current–current correlation function.

An alternative to the WLA is the weak-scattering approach
(WSA), where transport properties are studied within the expan-
sion in powers of E/ bη (η is the scattering rate and Eb is the
bandwidth) [8]. A non-Abelian chiral symmetry was identified,
which describes diffusion in two-band systems due to sponta-
neous symmetry breaking [9]. This is also the origin of a un-
damped fermion mode found for 2D Dirac fermions with a random
gap in Ref. [10]. In the WSA disorder fluctuations of the two-band
model are approximated by Gaussian fluctuations around a sad-
dle-point of the original model, expressed in terms of a functional
integral [8]. The saddle point is equivalent to the self-consistent
Born approximation (SCBA) of the one-particle Green's function,
while the Gaussian fluctuations are related to the WLA. The latter
consists of one-particle and two-particle diagrams which are
partially summed up in terms of geometric series (cf. Section 3).
Within the WSA it is also possible to analyze the fluctuations with
respect to the non-Abelian chiral symmetry. The projection onto
these fluctuations generates a nonlinear field which allows us to
go beyond the Gaussian approximation within the expansion in
powers of E/ bη . This idea is analogous to the nonlinear sigma
model, derived originally for one-band Hamiltonians by Schäfer
and Wegner [11]. The difference between the one-band and the
two-band Hamiltonians is that the former can be formulated ei-
ther in a symmetric replica space or in a supersymmetric fermion–
boson space [12], whereas the latter can also be expressed in
terms of a non-symmetric fermion–boson theory [10]. Therefore,
in the derivation of a nonlinear sigma model it is crucial to take
the two-band structure into account. A projection onto a single
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band could destroy the relevant symmetries of the system. In
more physical terms, the two-band structure is essential for sup-
porting diffusion in a two-dimensional system, since it allows for
Klein tunneling. The latter enables a particle in a potential barrier
to transmute to a hole, for which the potential barrier is not an
obstacle. Our aim is to establish a direct connection between the
WLA and the Gaussian fluctuations around the saddle point for 2D
Dirac fermions with a random gap, and to provide a general dis-
cussion about the existence of diffusive modes due to ladder and
maximally crossed contributions in two-band systems. Finally,
these results will be employed to calculate the conductivity cor-
rections, and the resulting conductivities will be compared with
experimental measurements in graphene. The results can also be
applied to other 2D two-band systems such as the surface of to-
pological insulators [13].

1.1. Motivation for the subsequent calculation

Since the subsequent calculations of the WLA are lengthy, we
give a brief summary and explain our motivation for this work.

The central idea of the WLA is a perturbation expansion of the
average Green's functions in terms of disorder, where certain types
of diagrams are summed up to infinite order. In particular, the
average two-particle Green's function can be approximated by
summing up ladder diagrams and maximally crossed diagrams (cf.
Fig. 1). These sums are obtained from the iteration of a Bethe–
Salpeter equation. All this is well known from numerous studies
[1–3,14]. However, only recently the case of a two-band Ha-
miltonian has been considered [4–7]. In comparison with the one-
band Hamiltonian this requires an extension of previous calcula-
tions, since Green's functions have poles in the upper as well as in
the lower band. The above-mentioned calculations have projected
out the poles in one band, but keeping the spinor structure of
Green's function. Although it is plausible that this should be a valid
approximation if the Fermi energy is in the other band far away
from the omitted pole, it needs to be checked how the approx-
imation affects the symmetries of the model and the related dif-
fusive modes. For this purpose we employ in this work the WLA
for the full two-band (spinor) Green's function and compare the
results with the one-band projected poles in Section 6. It turns out
that the diffusive modes are not destroyed by the projection, al-
though the diffusion coefficients are different. Another motivation
for this work was that previous calculations of the conductivity
within the WLA were based on the current–current Kubo formula.
The quantum fluctuations gave a logarithmically divergent cor-
rection to the classical Drude (or Boltzmann) result, which must be
cut-off by a phenomenological inelastic scattering length. This
problem can be circumvented by using the density–density re-
presentation of the Kubo formula [15], for which the conductivity,
as a function of charge density, has a V-shape form (cf. Eq. (43) and
Fig. 2), in agreement with the experimental observation. This re-
sult was previously also found within the WSA [9].

The agreement of the WLA and the WSA results in terms of the
density–density Kubo formula motivated us to compare the two
approaches in more detail. It is possible to identify the ladder
(maximally crossed) diagrams with fermionic (bosonic) fluctua-
tions of the effective fermion–boson representation of the WSA.

Thus the difference of the two types of diagrams reflects the
spontaneous symmetry breaking in the WSA.

Measurements of the field- and temperature dependent mag-
netoresistance, for instance, at graphene samples provide an in-
direct test for the quality of the WLA. The corresponding calcula-
tion uses as a starting point the diffusion propagator with minimal
coupling to the vector potential of a homogeneous magnetic field
[3]. This leads to a rather universal expression for the magne-
toresistance in terms of logarithmic and digamma functions whose
parameters are the magnetic field, scaled with various scattering
times. We expect a similar result for the magnetoresistance from
our unprojected propagators. On the other hand, the interplay of
different values of scattering times affects the question whether
there is weak localization or weak antilocalization [16,17]. In
particular, the final result depends crucially on the inelastic scat-
tering time, which can only be determined empirically as func-
tions of temperature. Thus, the magnetoresistance of graphene-
like materials is not a very robust quantity to distinguish between
localization and antilocalization within the WLA, and it is better to
consider the conductivity without magnetic field instead.

The paper is organized as follows. In Section 2 we introduce a
general description for the two-band Hamiltonian and various
types of random scattering. The main ideas of the WLA are dis-
cussed in Section 3, which includes the self-consistent Born ap-
proximation for the average one-particles Green's function, the
ladder and the maximally crossed contribution of the average two-
particle Green's function. In Section 4 we study the long-range
behavior of the average two-particle Green's function for a one-
band Hamiltonian (Section 4.1) and for the two-band Hamiltonian
(Section 4.2). These results are used to calculate the conductivity
(Section 5). And finally, in Section 6 we discuss the connection of
the WLA with the WSA, the robustness of the diffusion pole
structure with respect to a one-band projection of the two-band
Hamiltonian and the symmetry properties of the inter-node
scattering.

2. Model: Hamiltonians, Green's functions and symmetries

Quasiparticles in a system with two bands are described by a
spinor wavefunction. The corresponding Hamiltonian can be ex-
panded in terms of Pauli matrices 0,1,2,3σ . Here we will consider
either a gapless Hamiltonian

H h h (2)0 1 1 2 2σ σ= +

or a gapped Hamiltonian
Fig. 1. Diagrammatic representation of the fourth order terms for the ladder con-
tribution of t1( ) 1− − and maximally crossed contributions of 1( ) 1τ− − , respectively.

Fig. 2. DC conductivity as a function of /2 2 2ζ μ η= from the expression in Eq. (43).
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