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H I G H L I G H T S

� On-line optimisation of fed-batch cyanobacterial hydrogen production process.
� Economic model predictive control formulation for process optimisation.
� Finite-data window least-squares procedure for model re-estimation.
� Hydrogen production increased by 28.7% compared to previous research.
� Model re-estimation frequency is essential for process on-line optimisation.
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a b s t r a c t

Hydrogen produced by microorganisms has been considered as a potential solution for sustainable
hydrogen production for the future. In the current study, an advanced real-time optimisation metho-
dology is developed to maximise the productivity of a 21-day fed-batch cyanobacterial hydrogen pro-
duction process, which to the best of our knowledge has not been addressed before. This methodology
consists of an economic model predictive control formulation used to predict the future experimental
performance and identify the future optimal control actions, and a finite-data window least-squares
procedure to re-estimate model parameter values of the on-going process and ensure the high accuracy
of the dynamic model. To explore the efficiency of the current optimisation methodology, effects of its
essential factors including control position, prediction horizon length, estimation window length, model
synchronising frequency, terminal region and terminal cost on hydrogen production have been analysed.
Finally, by implementing the proposed optimisation strategy into the current computational fed-batch
experiment, a significant increase of 28.7% on hydrogen productivity is achieved compared to the
previous study.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrogen is considered as one of the fuels with great potential
to provide clean energy for transport, electricity and heating in the
future (Tamburic et al., 2011). At present, microorganisms such as
green algae, cyanobacteria and purple non-sulphur bacteria have
been extensively studied for biohydrogen production (Zhang et al.,
2015c; Basak and Das, 2006). Many efforts have been conducted to
identify biohydrogen synthesis metabolic mechanisms in different
species (Melis et al., 2000; Min and Sherman, 2010; Bandyo-
padhyay et al., 2010; Zhang and Vassiliadis, 2015). Effects of

culture composition, light intensity and temperature on biomass
growth and hydrogen production have also been comprehensively
explored from both simulation and experiment aspects (Basak and
Das, 2006; Dechatiwongse et al., 2014; Oh, 2004; Zhang et al.,
2015c, 2015b, 2015d, 2015e; Tamburic et al., 2012b) to determine
the favourable conditions for biogas production. In addition, to
facilitate the industrialisation of biohydrogen production process,
a variety of novel photobioreactors (PBR) with different config-
urations have been designed to enhance hydrogen production and
biomass density (Wang et al., 2013; Tamburic et al., 2011; Basak et
al., 2014).

In order to accomplish the scale-up of hydrogen production
from laboratory to industry, long term biogas production process
has been conducted in recent studies. For example, a 21-day and a
23-day fed-batch process for green algal hydrogen production
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have been reported by Vijayaraghavan et al. (2009) and Kim et al.
(2010), respectively. A 31-day continuous process for cyano-
bacterial hydrogen production has been carried out by Dechati-
wongse et al. (2015). Similarly, a 24-day and a 30-day fed-batch
process have also been developed by Lee et al. (2011) and Boran
et al. (2010), respectively. Based on these studies, it is found that
biogas productivity differs from 1.8 mL g�1 (biomass) h�1 to
37.9 mL g�1 (biomass) h�1 depending on both species nature and
process operating conditions.

Despite these achievements, the low biogas productivity shown
in recent studies still presents an open challenge for the indus-
trialisation of biohydrogen production, and to fill this gap process
optimisation becomes an indispensable tool to maximise the
process performance. However, as hydrogen is only generated by
green algae and cyanobacteria in anaerobic and nutrient-deprived
cultures whilst cell growth happens in aerobic and nutrient-
sufficient environments (Dechatiwongse et al., 2015), the incom-
patibility between biomass growth and biogas production condi-
tions significantly complicates the optimisation of this process. As
a result, although recent studies have tried to extend cell growth
period and increase hydrogen production (Tamburic et al., 2012a,
2013), the results suggest that it is difficult to accurately estimate
and control the addition of limiting nutrients during the entire
process purely based on experiments. Therefore, to address this
open challenge, a real-time dynamic optimisation framework has
to be implemented.

Dynamic optimisation is the procedure of finding the optimal
control by a given performance index (e.g. objective function) for a
time-varying process. It has been extensively used for a number of
off-line tasks in bioprocess simulation, including estimating
parameter values for fermentation kinetic models (Zhang et al.,
2015a; Adesanya et al., 2014), identifying desired operating con-
ditions for batch and fed-batch processes (Del Río-Chanona et al.,
2015; Alagesan et al., 2013), conducting operating studies in
response to disturbances and upsets, and exploring the design of
control systems (Biegler, 2014).

In spite of the wide application on off-line optimisation, it is
notable that bioprocesses in general are networks of complex
biochemical reactions manipulated by enzymes and affected by
culture conditions, in which advanced regulation methods have to
be carried out to ensure the performance and efficiency of the
process. As a result, traditional off-line control may not be suitable
for the optimisation of complicated bioprocess since small devia-
tions between the on-going process and the expected behaviours
can lead to significant losses in terms of process efficiency
(Mailleret et al., 2004; del Rio-Chanona et al., 2015).

Model predictive control (MPC), on the other hand, is an on-
line control implementation which is by now a well-established
method for the optimal control of linear and non-linear systems
(NMPC) (Grüne and Pannek, 2011). This method has become the
most widespread advanced control methodology currently used in
industry (Anon, 2013). The method approximates the solution of
an infinite horizon optimal control problem, which is computa-
tionally intractable in general, by a sequence of finite horizon
optimal control problems where the dynamic behaviour of the
system is optimised over a prediction horizon by computing the
optimal inputs over a control horizon (shown in Fig. 1). Then the
first element of the resulting control sequence is implemented in
each time step to generate a closed-loop static state feedback
(Grüne and Pannek, 2009).

In particular, the Economic MPC (EMPC) approach is that in
which an economic criterion (e.g. profitability, efficiency, produc-
tion, etc.) is directly included in the performance index of the MPC
formulation. This implementation achieves higher accuracy for
process optimisation compared to the conventional MPC method,
since it systematically determines the optimal operating strategy

based on the real time economic measurements whilst accounting
for state constraints, input constraints and time-varying con-
straints (Biegler, 1998; Ellis and Christofides, 2013; Bemporad and
Morari, 1999). Therefore, in the current study an EMPC strategy is
employed to maximise biohydrogen production in a real-time
framework by administering the optimal influent nutrient flow
rate over the entire process.

2. Methodology theory

2.1. Dynamic model for cyanobacterial hydrogen production

In the current study, cyanobacterium Cyanothece sp. ATCC
51142 is selected due to its high hydrogen productivity (Bandyo-
padhyay et al., 2010). In our previous study (Zhang et al., 2015b,
2015d), a dynamic model has been proposed to simulate the entire
batch process from cyanobacterial photo-heterotrophic growth to
hydrogen production, and is shown in Eqs. (1a) to (1m). The
detailed experimental setup and model construction can be found
in Zhang et al. (2015b, 2015d). Parameter values in the model are
listed in Table 1. When simulating a fixed volume fed-batch pro-
cess where dense nitrate (0.5 mol L�1) and glycerol (0.1 mol L�1)
solutions are fed into the reactor, Eqs. (1b) and (1f) are replaced by
Eqs. (1n) and (1o).
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q

� �
∙X∙
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N

NþKN
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Fig. 1. Model predictive control framework.

Table 1
Parameters in the hydrogen production model.

Parameter Value Parameter Value

μmax;h h�1 0.332 KN mg 50.0
μd;h L h�1 g�1 0.00716 YN=X mg g�1 492.7
kq 0.165 Yq=X g�1 0.0317
ks;H2 μmol m�2 s�1 140 YH=X mL g�1 h�1 14.20
ki;H2 μmol m�2 s�1 457 YO=X L g�1 81.02
YOd L g�2 486.03 YC=X mmol g�1 20.454
YC mmol g�1 h�1 0.0301 KC mmol L�1 0.0
αg 0.0067 db m 0.002
ks μmol m�2 s�1 165 τc m2 g�1 0.126
ki μmol m�2 s�1 457 I0 μmol m�2 s�1 92.0
L m 0.025 T °C 35.0
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