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H I G H L I G H T S

� The oscillations under consideration have been analyzed numerically.
� Two different regimes of oscillations have been identified.
� The results are of interest in the context of the QCM-D sensors.
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a b s t r a c t

The Quartz Crystal Microbalance with Dissipation (QCM-D) sensing technique has become widely used to
study various supported thin films and adsorption of biological macromolecules, nanoparticles, ag-
gregates, and cells. Such sensing, based on tracking shear oscillations of a piezoelectric crystal, can be
employed in situations which are far beyond conventional ones. For example, one can deposit tubes on
the surface of a sensor, orient them along the direction of the sensor surface oscillations, and study liquid
oscillations inside the oscillating tubes. Herein, we illustrate and classify theoretically the regimes of
liquid oscillations in this case. In particular, we identify and scrutinize the transition from the regime
with appreciable gradients along the radial coordinate, which are qualitatively similar to those near the
oscillating flat interface, to the regime where the liquid oscillates nearly coherently in the whole tube.
The results are not only of relevance for the specific case of nanotubes but also for studies of certain
mesoporous samples.

& 2015 Elsevier B.V. All rights reserved.

Oscillations at a liquid–solid interface induce oscillations in the
liquid. An interesting special case here is shear oscillations when
the interface oscillates in its plane. In this case, due to viscosity, the
oscillations in the liquid are successively more and more damped
with increasing distance from the interface. If (i) the interface is
flat and oscillates harmonically, (ii) the liquid compression is
negligible, and (iii) the thickness of the liquid layer is much larger
than the penetration depth of the perturbation, the established
oscillations of liquid are well known to be described analytically
[1]. In particular, the liquid velocity, v, is oriented along the in-
terface, depends only on the coordinate, x 0≥ , perpendicular to
the interface (x¼0 corresponds to the interface), and satisfies the
following equation:
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where ν is the coefficient of kinematic viscosity. The solution of
this equation (Fig. 1) is
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where ω is the frequency of oscillations, (2 / )1/2δ ν ω= is the pe-
netration depth, and v0 is the maximal interface velocity. The force
acting per unit interface area is accordingly given by
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where ρ is the liquid density, and η ρν= is the coefficient of dy-
namic viscosity. These equations show that due to the interplay of
liquid viscosity and inertia there is an increasing “phase-lag” of the
oscillations in the liquid with increasing distance from the surface
(note, e.g., that the x t/δ ω= condition moves from left to right as δ
increases).

In reality, the liquid oscillations described above may occur in
various situations. In particular, such oscillations represent one of
the ingredients of the function of the QCM-D sensing systems [2–
5] which have become widely used to study various thin films and
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adsorption of biological macromolecules (e.g., proteins, DNA,
polymers, and polyelectrolytes), nanoparticles, aggregates (e.g.,
vesicles or virions), and cells. In this setup, the typical frequency
and penetration depth are 5 MHz and (in water) 250 nm, respec-
tively (for other liquids, δ may be smaller or larger). In principle,
the QCM-D sensors can be employed in the situations which are
far beyond the conventional ones. For example, this technique was
employed in situ to quantify, in real time, adsorption of dye and
coadsorbates on flat and mesoporous TiO2 films [6]. Following this
line, one can in principle deposit or fabricate tubes on the surface
of a sensor and orient them along the direction of the surface
oscillations. In this context (and perhaps in some other contexts as
well), it is thus of interest to clarify how liquid will oscillate in a
tube oscillating along its axis. This is a main goal of our
communication.

Concerning the subject under consideration, we may note that
oscillations of liquid in a tube were earlier analyzed in different
contexts (see, e.g., articles [7–16] and references therein). Usually,
a tube was considered to be fixed. In particular, Womersley [7]
described the liquid oscillations induced by oscillations of the

pressure gradient. His results have been used directly or with
extensions in many subsequent experimental and theoretical
studies (see, e.g., [8,9] and references therein). Some other related
situations were described as well [10–16].

If a tube oscillates along its axis, the liquid located inside os-
cillates along this axis as well. Assuming that the tube cross sec-
tion is circular, we can use the polar coordinate, r R0 ≤ ≤ (R is the
tube radius), in order to describe liquid oscillations. In particular,
Eq. (1) can be replaced by
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Near the tube wall, the liquid velocity is equal to the wall velocity,
i.e.,

v R v t( ) cos( ). (5)0 ω=

The second boundary condition can be obtained taking into ac-
count that due to the symmetry there is no force in the center, and
accordingly
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Eq. (4) can formally be solved by using the zeroth-order Bessel
functions. With the boundary conditions (5) and (6), the corre-
sponding solution is, however, cumbersome, and to illustrate the
final results one should perform numerical calculations. Under
such circumstances, direct numerical integration of Eq. (4) appears
to be more convenient. Following the latter way, we used di-
mensionless variables, r R/ϱ = and tτ ω= . With these variables,
Eqs. (4)–(6) are read as
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where A R/ 2ν ω= is the dimensionless parameter determining
qualitative features of the liquid oscillations. The integration was
performed by employing the conventional discrete scheme at

A0.05 5≤ ≤ with 10 6τΔ = − and 0.01Δϱ = . With these steps, the
integration was proved to be accurate.

The results of our calculations (Figs. 2–4) show that with in-
creasing A there is transition from the regime with appreciable
gradients along r which are qualitatively similar to those described
by Eqs. (1) and (2) (cf. Fig. 1 with Fig. 2 for A¼0.05; note that
r R/ 1= is at the tube–liquid interface and should be compared
with x/ 0δ = in Fig. 1) to the regime where the liquid oscillates
nearly coherently in the whole tube (see, e.g., Fig. 4 for A¼5).

To characterize the regimes of liquid oscillations, it is in-
structive to compare the maximal liquid-induced shear force,

v r( / )ρν ∂ ∂ , acting per unit area of the wall in a tube with that,
v( )1/2

0ρ ων , acting on the flat wall (Eq. (3)). The corresponding di-
mensionless parameter defined as the ratio of these forces is
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where D v v( / )/ 0ρ≡ ∂ ∂ is the normalized velocity gradient near the
wall (at 1ρ = ). Another relevant dimensionless parameter can be
obtained by dividing the maximal force, v r( / )ρν ∂ ∂ , acting per unit
area of the wall by that, Rv0.5 0ρω , needed to induce coherent liquid
oscillations:
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Fig. 1. Shear liquid oscillations near the flat wall harmonically oscillating along its
plane: (a) the normalized liquid velocity, v v/ 0, as a function of time during one
oscillation period ( t0 2ω π≤ ≤ ) for x/ 0δ = , 1, 2, and 3 (Eq. (2)); (b) as (a) for the
normalized force, F /[ ( ) ]1/2ρ ων= , acting per unit area of the wall (Eq. (3)); (c) the
normalized liquid velocity as a function of the coordinate perpendicular to the wall
for t 0ω = , /2π , π, and 3 /2π (Eq. (2)).
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