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H I G H L I G H T S

� Low-temperature anomalies of specific heat in CNTs might have electronic nature.
� These anomalies cannot be associated with a change in dimension of atomic vibrations.
� Electronic nature is determined by electrons scattered on point defects.
� These electrons participate in the formation of a new short-range order.
� Within our model it is possible to calculate the short-range order parameters.
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a b s t r a c t

The low-temperature behavior of the specific heat in disordered nanotubes strongly depends on
structure changes and is not explained by the phonon contribution. Expression for electronic specific
heat is carried out taking into account the multiple elastic electron scattering on impurities and
structural inhomogeneities of short-range order type. The calculated electronic specific heat depends on
diameter of nanotube, concentration of impurities, parameters of short-range order (structural hetero-
geneity) and describes the peculiarities of low-temperature behavior of specific heat observed in
disordered CNT.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction.

Specific heat of single- and multi-walled carbon nanotubes
(CNTs) has been well studied. At temperatures above 100 K,
specific heat C(T) is shown to be satisfactorily described by the
phonon contribution [1,2]. At low temperatures, below 100 K,
C(T) depends nonlinearly on temperature, and has kinks and
jumps for tubes with different structures [3–7]. These low-
temperature anomalies of specific heat are not described by the
phonon contribution to C(T), while a qualitative agreement of
theoretical and experimental data could be achieved by an
assumption of a change in the dimension of oscillations [6].

Conventionally obtained electronic contribution to specific heat
in nanotubes at low temperatures is several orders of magnitude
smaller than that of the measured C(T). However, the authors of

Ref. [8] note that in the doped tube the electronic specific heat can
be much higher, if the Fermi level lies near the band edge.

Experimental studies of C(T) in the doped CNTs were carried
out in Refs. [6,9,10]. In Ref. [6] it was found that at To20 K specific
heat in CNTs with He dramatically increases in comparison with C
(T) in a clean tube (without He), this growth, however, disappears
at higher temperatures. The authors attribute this change to the
high heat capacity of helium adsorbed below 20 K and desorbed
above 20 K [6]. An increase of specific heat is also found in tubes
doped with nitrogen and xenon [9,10].

In [3], the dependence of specific heat on structure and
diameter of nanotube bundles is investigated. At To20 K, C(T) is
found to be weakly dependent on diameter, but at higher tem-
peratures in bundles with diameter d¼5 nm there is an inflection
point in the C(T) plot; in bundles with d420 nm, in addition to the
inflection point, there is a peak in the curve (the “excessive”
specific heat).This peak is attributed to a possible orientation
order-disorder transition [3]. Similar low-temperature anomalies
of specific heat have been also found in other studies [11,12].
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Our investigations of the low-temperature transport properties
of disordered metallic CNTs showed that the appearance of a gap
in the electronic density of states (DOS) on the Fermi level [13], the
inverse temperature dependence of electrical conductivity [14],
and the nonlinear thermopower [15] could be associated with the
short-range-order atomic reconstruction of the “phase separation-
ordering” in CNTs. The results of our investigations [13–15] of DOS
and electron transport properties depending on temperature and
different types of atomic short-range-order structures in CNTs
with different diameters are in good agreement with experimental
data. That is why we are going to use our approach to describe the
low-temperature behavior of specific heat in the disordered CNTs
and show that the anomalies in C(T) at low temperatures may
have electronic nature and could be associated with the electrons
participating in structure reconstruction of nanotubes.

2. Calculation

To calculate electronic specific heat, let us write the general
form of thermodynamic potential

Ω¼ T∑
n

Z
d p!

2πð Þ3
ln G iεn; p

!� �
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where γ-0, εn ¼ πT 2nþ1ð Þ and Gðiεn; p!Þ is the Matsubara Green
function of electrons in a system with impurities and structural
short-range order given by [16]
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is DOS at the Fermi level in a clean nanotube

(without defects) [13], α is the short-range-order parameter [17],
d is the nanotube diameter, c is the concentration of alien atoms in
a tube, m is the electron mass, V is the unit cell volume, N is the
number of atoms inside the structure inhomogeneity of the short-
range order type, and u0 is the effective potential of multiple
elastic scattering of electrons on defects [18].

Passing from summation to integration on the contour in (1),
we obtain the following expression for entropy S¼ �∂Ω=∂T
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where G z; p!
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is the analytic extension of the Matsubara Green

function in the range Imz40, Imzo0, and the contour corre-
sponds to the poles thðz=2TÞ at z¼ iπTð2nþ1Þ. Let us represent
Eq. (3) in the form of integrals along the real axis ε and pass from
integration over momentum to integration over mass surface. As a
result we have

S¼ ν
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The integrals over ε containing arctgð1=2τðεp�εÞÞ and imaginary
part of the retarded Green function, after the transition to the
mass surface and the integration over the momentum, will vanish
because of oddness of the integrand.

Expression (4) has a standard form for electronic entropy, but
contains DOS at the Fermi level in the disordered nanotube, which

depends on temperature, short-range order parameter, concentra-
tion of alien atoms and tube diameter [13].
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Here β¼ ð
ffiffiffi
3

p
πℏd=aγ0Þ, a¼ 2:46� 10�10 m is the lattice constant,

γ0 ¼ 2:9 eV is the transfer integral between the first neighbor pz
orbitals [19], and p0 is the Fermi momentum in a defect-free CNT.
The first term in Eq. (5) is DOS (ν0) in a clean tube, and the second
one is determined by electron scattering on impurities and
structural short-range order in a real tube.

Using the well-known expression for the specific heat
C ¼ Tð∂S=∂TÞ, from Eqs. (4) and (5) we obtain
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In fact, this expression consists of two linear and one nonlinear
contributions. The linear contribution is determined by DOS in a
defect-free tube (the first term) and scattering of electrons on
impurities (the second term at B¼0, which is possible if the short-
range order parameters is equal to zero). Nonlinear temperature
dependence of specific heat at low temperature is defined by the
nonlinear DOS in a disordered tube. DOS also explicitly depends on
concentration of alien atoms, short-range order parameter, tube
diameter and the Fermi momentum (p0), determining the relevant
dependences of electronic specific heat. On the other hand, if
specific heat is independent of diameter (dependence on diameter
is observed only in tubes with very small diameters, d�1 nm), the
momentum p0 has a significant influence on the value of specific
heat. For instance, at p0�10�25 kg m/s the calculated specific heat
is two orders of magnitude lower than the measured C(T), while at
p0�10�24 kg m/s the calculated electronic specific heat is already
comparable to the experimental data. The maximum value of
specific heat is determined by the linear temperature “impurity”
contribution:
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Thus, we have found out that the linear impurity contribution to
specific heat determines the quantitative agreement with experi-
mental data, while the nonlinear contribution from structural
disorder describes the low-temperature behavior of C(T) in
disordered CNTs.

From Eq. (6) it is evident that electronic specific heat is a
monotonic function of temperature, and does not have any singula-
rities, if all the quantities in Eq. (6) do not depend on temperature.
Actually, the short-range order parameter can depend on tempera-
ture α¼ α Tð Þ [17].

In our previous investigations we have shown that the gap in
DOS [13], the negative temperature coefficient of electrical resis-
tivity [14], the high value of thermopower S and its derivative
∂S=∂T in the metallized carbon nanotubes [15] are due to the
temperature dependence α Tð Þ, when the sign of the short-range
order parameter changes from positive to negative as the tem-
perature decreases and the ordering of adsorbed atoms takes
place. Thus, to describe the singularities in the temperature plot
of specific heat we should assume that short-range order para-
meter undergoes temperature changes, defining peculiarities of
CNT temperature characteristics.

Fig. 1 presents the experimental [3] (squares) and calculated
data (thick solid line) for specific heat with the fitted plot α Tð Þ
(inset), which allows us to achieve the coincidence of peaks in the
calculated and measured C(T).
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