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H I G H L I G H T S

� The natural frequencies are quite
sensitive to the mechanical loading
and electric loading.

� The natural frequency is not sensi-
tive to the thermal loading.

� The nonlocal parameter has dis-
tinguished effect on mode shapes for
CCCC and CCSS nanoplates.

G R A P H I C A L A B S T R A C T

The effect of nonlocal parameter μ on the fundamental mode shape of the electric potential ϕ⁎ of the
CCCC piezoelectric nanoplate.
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a b s t r a c t

This paper investigates the thermo-electro-mechanical vibration of the rectangular piezoelectric nano-
plate under various boundary conditions based on the nonlocal theory and the Mindlin plate theory. It is
assumed that the piezoelectric nanoplate is subjected to a biaxial force, an external electric voltage and a
uniform temperature rise. The Hamilton's principle is employed to derive the governing equations and
boundary conditions, which are then discretized by using the differential quadrature (DQ) method to
determine the natural frequencies and mode shapes. The detailed parametric study is conducted to
examine the effect of the nonlocal parameter, thermo-electro-mechanical loadings, boundary conditions,
aspect ratio and side-to-thickness ratio on the vibration behaviors.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to the instinct electro-mechanical coupling effects, piezo-
electric materials have various practical applications in smart
structures and systems [1,2]. With the trends toward the device
miniaturization, piezoelectric materials (e.g. ZnO, ZnS, PZT, GaN,
BaTiO3, etc.) and their nanostructures (e.g. nanowires, nanobelts,
nanorings, nanohelices, etc.) have received considerable attentions

in recent years [3–7]. The piezoelectric nanostructures possess the
novel thermal, electrical, mechanical and other physical/chemical
properties compared with their macroscale counterparts, and are
treated as key components in many nanodevices, including na-
noresonators, nanogenerators, light-emitting diodes, chemical
sensors, etc. [7–10].

Piezoelectric nanostructure is a field of nanotechnology with
the controlling of the dimension that may vary from several
hundred nanometers to just a few nanometers. On such scale, the
size effect is generally recognized to be significant, which has also
been proved by both experiments and atomistic simulations
[11,12]. So the classical continuum theory can no longer be eligible
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for the analysis of nanostructures, and various high-order theories
(e.g. strain gradient theory, couple stress theory, micropolar the-
ory, nonlocal theory, etc.) are developed to characterize the size
effect of nanostructures by introducing an intrinsic length scale.
Among these theories, the nonlocal theory [13–15] has been
widely accepted and extensively employed to study the size effect
of nanostructures. By considering the interactions and forces be-
tween atoms, the nonlocal theory introduces the internal length
scale into the constitutive equations as a material parameter. The
key idea of the nonlocal theory is that the stress at a reference
point depends on the strain components of all points in the do-
main around the reference point. Based on the Eringen's nonlocal
theory, many investigators have developed nonlocal nanobeam,
nanoplate and nanoshell model to analyze the bending [16–20],
buckling and post-buckling [21–25], linear vibration [26–29],
nonlinear vibration [30–32] and wave propagation [33–35] of
nanostructures, such as carbon nanotubes, graphene sheets, na-
nowires, etc.

However, the studies of nonlocal theory mentioned above are
only limited in the classical elastic nanostructures. Recently, the
nonlocal theory has been already extended to study the size-de-
pendent mechanical performances of the piezoelectric nanos-
tructures. Ke and his co-authors investigated the theromo-electro-
mechanical free vibration [36], nonlinear vibration [37] and post-
buckling [38] performances of piezoelectric nanobeams based on
the Timoshenko beam theory and the nonlocal theory. Further-
more, Liu et al. [39] derived the analytical solutions of the free
vibration of the nonlocal piezoelectric nanoplates using the
Kirchhoff plate theory, and discussed the effect of the nonlocal
parameter and thermo-electro-mechanical loadings on the natural
frequencies of the piezoelectric nanoplate. Arani and his cow-
orkers [40–43] presented a series of works to study the thermo-
electro-mechanical buckling, linear and nonlinear vibration be-
haviors of Boron Nitride nanotubes (BNNTs) by using the nonlocal
beam model, plate model and shell model. Wang and Wang [44]
examined the bending behavior of a piezoelectric nanowire in-
corporated both the surface effect and small-scale effect by using
the surface elasticity theory and nonlocal theory. More recently,
Zhang et al. [45] analyzed the dispersion characteristics of elastic
waves propagating in a monolayer piezoelectric nanoplate con-
sidering the surface piezoelectricity as well as the nonlocal small-
scale effect.

In this paper, the free vibration of the rectangular piezoelectric
nanoplate is investigated by using the nonlocal theory and the
Mindlin plate theory. It is assumed that the piezoelectric nanoplate
is subjected to the combined thermo-electro-mechanical loads. By
using the Hamilton's principle, the governing equations and
boundary conditions are derived. Then these equations are dis-
cretized by using the differential quadrature (DQ) method and are
solved to determine the natural frequencies and mode shapes of
piezoelectric nanoplates under different boundary conditions.
Numerical results are presented in both tabular and graphical
forms to show the influence of the nonlocal parameter, biaxial
forces, external electric voltage, temperature rise, aspect ratio and
side-to-thickness ratio on the vibration characteristics of piezo-
electric nanoplates.

2. Nonlocal theory for piezoelectric materials

The essence of the Eringen's nonlocal elasticity theory [14] is
that the stress at a point x in a body depends not only on the strain
at that point but also on the strain at all other points ′x in the
domain. Such statement can have a satisfactory explanation of
some phenomena related to atomic and molecular scales such as
the high frequency vibration and wave dispersion. Recently, Ke

and his co-authors [36,37,39] extended the nonlocal elasticity
theory to the piezoelectric nanostructures. Mathematically, the
basic equations for a nonlocal homogeneous piezoelectric solid
without body force can be written as

∫σ α τ ε λ= ′ − ′ − ′ − Δ ′
Λ

c e E Tx x x x x( , ) ( ) ( ) d , (1)ij ijkl kl kij k ij
⎡⎣ ⎤⎦

∫ α τ ε κ= ′ − ′ + ′ + Δ ′
Λ

D e E p Tx x x x x( , ) ( ) ( ) d , (2)i ikl kl ik k i
⎡⎣ ⎤⎦

σ ρ= ¨ =u D, 0, (3)ij j i i i, ,

ε Φ= + = − ˜u u E( ), , (4)ij j i j j i i i,
1
2 , ,

where Λ is the volume of the piezoelectric solid; σij, εij, Di, Ei and ui

are respectively the components of the stress, strain, electric dis-
placement, electric field and displacement; cijkl, eikl, κik, λij, pi and ρ
are respectively the elastic constants, piezoelectric constants, di-
electric constants, thermal moduli, pyroelectric constants and
mass density; ΔT and Φ̃ are the temperature rise and electric po-
tential, respectively. α τ| ′ − |x x( , ) represents the nonlocal attenua-
tion function, incorporating into the constitutive equations the
influences at the reference point produced by the local strain at
the source ′x , where | ′ − |x x is the Euclidean distance. τ = e a l/0 is
the scale coefficient that incorporates the small scale factor, where
e0 is a material constant determined experimentally or approxi-
mated by matching the dispersion curves of the plane waves with
those of the atomic lattice dynamics and a and l are the internal
and external characteristic lengths of the nanostructures,
respectively.

Referring to Eringen [14], the integral constitutive relations can
be transformed to differential equations as

σ σ ε λ− ∇ = − − Δe a c e E T( ) , (5)ij ij ijkl kl ijk k ij0
2 2

ε κ− ∇ = − + ΔD e a D e E p T( ) , (6)i i ikl kl ik k i0
2 2

where ∇2 is the Laplace operator, and e0a is the scale coefficient
revealing the size effect on the response of nanostructures.

For the plate type structure, the nonlocal constitutive relations
(5) and (6) can be approximated as

σ σ ε ε λ− ∇ = ˜ + ˜ − ˜ − ˜ Δe a c c e E T( ) , (7)xx xx xx yy z0
2 2

11 12 31 11

σ σ ε ε λ− ∇ = ˜ + ˜ − ˜ − ˜ Δe a c c e E T( ) , (8)yy yy xx yy z0
2 2

12 11 31 11

σ σ ε− ∇ = ˜ − ˜e a c e E( ) 2 , (9)xz xz xz x0
2 2

44 15

σ σ ε− ∇ = ˜ − ˜e a c e E( ) 2 , (10)yz yz yz y0
2 2

44 15

σ σ ε− ∇ = ˜e a c( ) 2 , (11)xy xy xy0
2 2

66

γ κ− ∇ = ˜ + ˜ + ˜ ΔD e a D e E p T( ) , (12)x x xz x0
2 2

15 11 1

γ κ− ∇ = ˜ + ˜ + ˜ ΔD e a D e E p T( ) , (13)y y yz y0
2 2

15 11 1

ε ε κ− ∇ = ˜ + ˜ + ˜ + ˜ ΔD e a D e e E p T( ) , (14)z z xx yy z0
2 2

31 31 33 3

where c̃ij, ẽij, κ̃ij, λ̃ij and p̃i are respectively the reduced elastic
constants, piezoelectric constants, dielectric constants, thermal
moduli and pyroelectric constants for the piezoelectric nanoplate
under the plane stress state [46,47]. These constants are given as
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