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H I G H L I G H T S

� We obtain the energy levels and
wave functions using finite element
method in the presence of impurity.

� The absorption coefficients and re-
fractive index changes have been
obtained.

� The optical properties of a cone like
quantum dot are greater than a
pyramid quantum dot of same vo-
lume and height.

� The impurity location plays an im-
portant role in optical properties of a
pyramid and a cone like quantum
dot.
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a b s t r a c t

In this work, we have investigated the effect of impurity position on optical properties of a pyramid and a
cone like quantum dot. For this goal, we first obtain the energy levels and wave functions using finite
element method (FEM) in the presence of impurity. Then, we have studied the influence of impurity
location on refractive index changes and absorption coefficients of the two quantum dots. We found that
there is a maximum value for total refractive index changes and absorption coefficients at a special
impurity position. Also, we have found that the refractive index changes and absorption coefficients of a
cone like quantum dot are greater than a pyramid quantum dot in same volume and height. According to
the results, it is deduced that the impurity location plays an important and considerable role in the
electronic and optical properties of a pyramid and a cone like quantum dot.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the past three decades, the physics of low-dimensional
semiconductor structures has become a vital part of present-day
research. Low-dimensional structures allow the study of a variety of
new mechanical, optical, and transport phenomena [1]. Examples of
low-dimensional semiconductor structures are quantum wells, quan-
tum wires, and quantum dots [2–5]. There are several technological
progresses in the fabrication of semiconductor structures like chemical

lithography, molecular beam epitaxy, and etching [2–4]. Among the
nanostructures, quantum dots have become subject of intensive
experimental and theoretical studies nowadays. The improvements
of the semiconductor growth techniques have offered the possibility
to obtain quantum dots with various shapes such as spherical,
cylindrical, ellipsoidal, pyramid-like, and cone-like [5–8].

It is clear that the semiconductor structures open new possibilities
to tailor the mechanical, electronic, magnetic and optical properties of
materials. The optical and transport properties of low-dimensional
semiconductor structures have became subject of intensive experi-
mental and theoretical studies in the several last decades [6,9]. These
properties are sensitive to external effects such as external electric and
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magnetic fields, pressure, temperature, and impurity positions. Hither-
to, many investigations have been done on optical, electronic and
transport properties of low-dimensional semiconductor structures
under the external effects [10–17].

The knowledge of the electrical and optical properties of
nanostructures associated with shallow-donor impurities is im-
portant in semiconducting low-dimensional systems. In this sense,
the investigation of impurity-related effects in low-dimensional
semiconductor structures can show the number of publications
[18–24]. These reports deal with various nanostructures and
different physical features such as the influence of quantum wire
cross section geometry, application of electric and magnetic fields,
hydrostatic pressure and temperature effects.

The problem of shallow donor impurities confined to a semi-
conductor structure has been studied extensively during the two
last decades [25–30]. Study of impurity states is important, not
only to understand how such levels differ from the bulk, but also
in the fabrication and subsequent working of electronic and
optical devices based on such systems. The impurity states have
the essential roles in the thermal, optical and electrical properties
and also in semiconductor devices. Hitherto, many works have
been performed on the impurity states in quantum dots [27–29].

We know that optical properties of semiconductor nanostructures
such as quantum wells, quantum wires, and quantum dots have
attracted much attention in the past few years. In this regard, much
attention has been focused on refractive index changes and absorption
coefficients. In the past few years, several works have been done on
effect of impurity states on optical properties of various quantum dots.

In this paper, we intend to study effect of impurity location on
refractive index changes and absorption coefficient of a pyramid
and a cone like quantum dot that is grown on a wet layer in the
presence of impurity. For this purpose, we have calculated the
energy levels and wave functions in the effective mass approx-
imation numerically by using the finite element method.

2. Theory and model

In the effective mass approximation, the Hamiltonian of a
hydrogenic donor impurity located at the position r0in a quantum
dot is given by

ε
= −

−
H H

e
r r

,
(1)

0

2

0

where e and ε are the electron charge and medium permittivity,
respectively. The Hamiltonian without impurity can be written as

= − ℏ ∇ +⁎H
m

V x y z
2

( , , ). (2)0

2
2

Here, ⁎m is the effective mass of the electron. In this present
work, we have considered two various quantum dots, pyramid and
cone like, with finite confining potential. The confining potential
V x y z( , , ) is given by
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where V0 is the potential height between GaAs and Ga0.5In0.5As. It is
clear that due to the complicated form of the quantum dot shapes, the
calculation of energy levels and wave functions, analytically, is a
nontrivial task. Therefore, we are interested in using the finite element
method (FEM) to find wave functions and energy levels of the systems
[31]. In the following, we briefly present the FEM to solve the
Schrodinger equation in the Cartesian coordinates.

The finite element method (FEM), sometimes referred to as
finite element analysis (FEA), is a computational technique used to

obtain approximate solutions of boundary value problems in
engineering and basic sciences [32,33]. Simply stated, a boundary
value problem is a mathematical problem in which one or more
dependent variables must satisfy a differential equation every-
where within a known domain of independent variables and
satisfy specific conditions on the boundary of the domain. The
field is the domain of interest and most often represents a physical
structure. The field variables are the dependent variables of
interest governed by the differential equation. The boundary
conditions are the specified values of the field variables (or related
variables such as derivatives) on the boundaries of the field.
Depending on the type of physical problem being analyzed, the
field variables may include physical displacement, temperature,
heat flux, and fluid velocity to name only a few.

We consider a volume of some material or materials having
known physical properties. The volume represents the domain of a
boundary value problem to be solved. We construct a grid in real
space using a discrete number of points. The eigenenergies and
eigenstates of the electrons confined in a quantum dot are
evaluated solving the three-dimensional Schrödinger equation:
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The operator ∇2 is properly discretized using the standard
three-point finite difference approximation. The confinement
volume is represented by a three-dimensional mesh of x y z( , , )i i i

points.
In order to carry out simulation numerically, one needs to

discretize Eq. (4). The spatial derivative is approximated for all
discretized space except on boundaries and given by
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The notations φ i j k( , , )int out( , ) are used as φ Δ Δ Δi x j y k z( , , )int out( , )

where Δ Δx y, and Δz are spatial spacing. Also, the superscriptions
"int" and "out" represents the wave function inside and outside
the dot.

The continuity of the wave function on the quantum dot
boundary is defined as

φ φ=x y z x y z( , , ) ( , , ) (6)
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Also, derivative of wave function on the quantum dot boundary
is defined as:
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