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H I G H L I G H T S

� Donor states in a spherical quantum dot subject to a magnetic field are calculated.
� The effective-mass equation is numerically solved by the finite-difference method.
� Excellent agreement with the H atom is obtained by the Richardson extrapolation.
� Variational results may either underestimate or overestimate the binding energy.
� Transition energies in a realistic dot are given in terms of the field strength.
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a b s t r a c t

The ground and excited states of a donor impurity at the center of a spherical quantum dot subject to a
magnetic field are calculated within the effective-mass approximation. The barriers are infinitely high
and the differential equation is solved by combining the finite-difference method with the Richardson
extrapolation. The binding and transition energies are more accurate than the available variational va-
lues, and excellent agreement is found with the hydrogen atom. The transition energies for a medium-
size quantum dot are given.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The theoretical study of nanometric pieces of semiconductor
materials, called quantum dots, has been a valuable tool during the
rise of nanoscience and nanotechnology. Most efforts have been
devoted to the calculation of the electronic states, taking into ac-
count different shapes of the confining potential, the presence of
inner and outer impurities [1], applied electric [2–4] and magnetic
fields [5,6], excitonic states [7], electron–electron [8,9] and elec-
tron–phonon [10] interactions.

Several investigations of hydrogenic impurities in quantum
dots subject to a magnetic field have been reported in the litera-
ture. Xiao et al. [11] have calculated the binding energy by as-
suming an infinite confining barrier. They followed a variational

approach to calculate the energy of the donor states and the
ground state of an electron in the absence of the impurity. Their
results display the expected qualitative behavior of the binding
energy as a function of the dot radius and the magnetic-field
strength. A similar approach was used by Corella-Madueño et al.
[12] and Seddik et al. [13], while Guimarães and Prudente [14]
used a different variational procedure which is based on the finite-
element method. Furthermore, Changa et al. [15] have dealt with
the case of an off-center donor in a spherical quantum dot without
the magnetic field. They found good agreement between pertur-
bation-theory and finite-difference approaches.

The variational method is of intrinsic limited accuracy and may
either under or overestimate the exact values of the binding and
the transition energies. This is because such energies are differ-
ences between two approximate energy values. To overcome this
difficulty, we perform a finite-difference calculation of the elec-
tronic states, both in the absence and the presence of the donor
impurity. We deal with the binding energy of the 1s states and the
1s-2p7 transition energies. We hope this will pave the way for a
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more detailed description of the impurity states in the nanos-
tructures under investigation.

The remainder of this paper is organized as follows: In Section
2, the Hamiltonian and the symmetry of the wave function are
described. Section 3 contains the main finite-difference equations,
the discretized boundary conditions and the Richardson extra-
polation procedure. In Section 4, we present the numerical results
for the 1s and several excited energy levels as a function of the
quantum-dot radius and the magnetic-field strength. Finally, we
summarize our findings in Section 5.

2. Theory

We consider an electron moving inside a spherical quantum
dot, interacting with a positively charged impurity atom placed at
the center of the dot, and subject to a magnetic field along the z-
axis.

Conveniently, we choose the origin of coordinates at the im-
purity position and express lengths and energies in units of the
effective Bohr radius an and the effective Rydberg Ryn of the dot
material, respectively. In these units, the dot radius is denoted as R.
Moreover, the dimensionless parameter γ λ= ⁎a( / )2 measures the
magnetic-field strength, where λ = eB/( ) is the Landau radius.
The vector potential of the magnetic field is chosen in the sym-
metric gauge.

The effective-mass equation of the neutral donor, with the
origin of energies at the bottom of the conduction band of the dot
material, is given by

Ψ θ ϕ Ψ θ ϕ^ =H r E r( , , ) ( , , ), (1)

where r, θ and ϕ are the usual spherical coordinates: r is the
electron-impurity distance, while θ and ϕ are the polar and azi-
muthal angles, respectively. The Hamiltonian operator has the
following form:
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Assuming that the electron is strictly confined within the dot,
the boundary condition Ψ θ ϕ =R( , , ) 0 applies for all values of θ
and ϕ. Moreover, according to the axial symmetry, the eigen-

functions of Ĥ have well-defined angular momentum along the z-
axis. Its eigenfunctions may be written as
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where m is an integer and ψ θr( , )m satisfies
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Moreover, ψ θ =R( , ) 0m applies for all values of θ. Since

γ^ − ^ = −−H H m2m m , the eigenvalues Em and eigenfunctions ψ θr( , )m

may be chosen to satisfy γ= −−E E m2m m and ψ θ ψ θ=− r r( , ) ( , )m m .
Depending on the symmetry of the wavefunction, additional

boundary conditions apply [16]. In fact, ψm satisfies
ψ π θ σψ θ− =r r( , ) ( , )m m , where σ = 1 (σ = − 1) corresponds to
symmetric (anti-symmetric) states along the z-axis direction. For

instance, σ = 1 (σ = − 1) applies to 1s-like and 2p7-like (2p0-like)
states. In this sense, one may restrict the numerical calculations to
the range θ π≤ ≤0 /2.

3. Numerical procedure

The donor energy levels in the quantum dot are calculated by
the finite-difference technique. This is done over a rectangular and
uniform mesh in the computational domain given by ≤ ≤r R0 and

θ π≤ ≤0 /2, with spacing = +h R M/( 1) and π= +k N/(2 2), re-
spectively, where R is the dimensionless quantum-dot radius and
M, N are sufficiently large integer numbers. Hence, the mesh is
given by θ = − −r i h j k( , ) (( 1) , ( 1) )i j , with ≤ ≤ +i M1 2 and

≤ ≤ +j N1 2.
The node values of the wavefunction are denoted by

ψ θ=G r( , )i j m i j, , and the second-order discretization of Eq. (4) leads
to
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and E M N( , )m is the finite-difference estimate of the energy level
Em.

The boundary conditions are discretized up to second order.
The confinement of the electron within the dot, i.e, ψ θ =R( , ) 0m ,
leads to =+G 0M j2, . When σ = − 1 (σ = 1), the function (the partial
derivative on θ) should vanish at θ π= /2, i.e., =+G 0i N, 2

( − + =+ +G G G4 3 0i N i N i N, , 1 , 2 ). Moreover, smoothness at the polar
axis of states with ≠m 0 (m¼0) requires the function (the deri-
vative with respect to θ) to vanish at θ = 0, i.e., =G 0i,1

( − + =G G G3 4 0i i i,1 ,2 ,3 ). The last boundary condition refers to
ψ θ(0, )m . Since every node of the form θ(0, )j maps into the dot
center, one has =G Gj1, 1,1. Moreover, the coefficient of G j1, in Eq. (6)
is − =h r h(1/ 1/ )/ 02 . This means G1,1 is not relevant in our finite-
difference calculation of the energy levels.

When the boundary values are put into Eq. (6), the system of
linear equations may be written as

Λ
→

=
→

G E M N G( , ) , (8)m

where
→
G is a linear arrangement of length MN containing the

values of Gi j, for ≤ ≤ +i M2 1, ≤ ≤ +j N2 1. Approximate values of
the energy levels are given by the eigenvalues of the matrix Λ.

To improve the accuracy of the calculated energy levels, it is
desirable to approach the limit → ∞M , → ∞N . Therefore, we use
quite large values for M and N, namely, = =M N 1001 1 and

= =M N 2002 2 , for ≤R 10, but = =M N 3001 1 and = =M N 6002 2

when R¼30. Thus, the smallest matrix size is ×10 000 10 000 and
the largest one is ×360 000 360 000. By fixing the ratio =M N/ 1,
the numerical values of E N N( , )m may be fitted by a simple law of
the form α β= +E N/N

2. A quadratic Richardson extrapolation
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