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H I G H L I G H T S

� Three-dimensional nonlocal elasticity theory of Eringen is used for functionally graded micro/nanoplates.
� Exact closed-form solutions are presented for both in-plane and out-of-plane free vibration.
� The effects of nonlocal parameter and gradient index on the free vibration of plate are investigated.
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a b s t r a c t

Using three-dimensional (3-D) nonlocal elasticity theory of Eringen, this paper presents closed-form
solutions for in-plane and out-of-plane free vibration of simply supported functionally graded (FG)
rectangular micro/nanoplates. Elasticity modulus and mass density of FG material are assumed to vary
exponentially through the thickness of micro/nanoplate, whereas Poisson's ratio is considered to be
constant. By employing appropriate displacement fields for the in-plane and out-of-plane modes that
satisfy boundary conditions of the plate, ordinary differential equations of free vibration are obtained.
Boundary conditions on the lateral surfaces are imposed on the analytical solutions of the equations to
yield the natural frequencies of FG micro/nanoplate. The natural frequencies of FG micro/nanoplate are
obtained for different values of nonlocal parameter and gradient index of material properties. The results
of this investigation can be used as a benchmark for the future numerical, semi-analytical and analytical
studies on the free vibration of FG micro/nanoplates.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Functionally graded materials are a new class of nonhomoge-
neous materials where their properties vary continuously from
one point to the other. This continuity provides soft and contin-
uous stress distribution without the interface difficulties that are
common in the laminated composite materials [1]. Typically, FG
materials are made of a mixture of two materials, mainly ceramic
and metal, to achieve a composition with a certain functionality.
The physical properties of FG materials make them attractive for a
variety of applications in disciplines as diverse as tribology,
geology, optoelectronics, biomechanics and fracture mechanics
[2,3]. Fast growing of the application of FG materials engages a
large number of researchers to study different mechanical aspects
of the structures composed of FG materials. In the recent years, FG
materials are used in the micro/nanodevices such as micro/

nanoelectromechanical systems [4,5], shape memory alloy thin
films [6] and atomic force microscopes [7].

In the study of mechanical behavior of micro/nanoplates, the
size effect matters. Since the classical continuum theory fails to
capture the size effect, other theories such as modified couple
stress [8], strain gradient [9] and nonlocal elasticity [10] are used
to study mechanical behavior of micro/nanoplates. By a reviewing
on the literature, it is found that a few researches are carried out to
investigate bending, buckling and vibration of FG micro/nano-
plates. Based on the classic and Mindlin plate theories, Lu et al.
[11,12] studied surface effects on bending and free vibration of FG
ultra-thin circular films. Also, Lu et al. [13] investigated the effects
of surface energies on nonlinear responses of nanoscale FG
rectangular films based on the von Karman nonlinear strains and
classic plate theory. Reddy and Kim [14] developed a general
nonlinear modified couple stress-based third order theory for FG
micro/nanoplates based on the von Karman nonlinear strains.
They assumed power law distribution for the material properties
through the plate thickness and used principle of virtual displace-
ments to derive equations of motion. Moreover, they used their
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developed theory to study bending and free vibration of simply
supported rectangular plates [15]. Sharafkhani et al. [16] used a
step-by-step method and Galerkin-based reduced order model to
consider nonlinear static deflection and dynamic motion of FG
circular microplates under a nonlinear electrostatic pressure and
transverse mechanical shock. Natarajan et al. [17] employed a
finite element method to study free flexural vibration of FG
nanoplates. The effective material properties are estimated
through the thickness of nanoplate using Mori-Tanaka homogeni-
zation method. Ke et al. [18] presented numerical solutions for
bending, buckling and free vibration of FG annular Mindlin
microplates based on the modified couple stress theory. They
utilized Mori-Tanaka homogenization technique to compute ma-
terial properties and employed differential quadrature (DQ) meth-
od to solve governing mechanical equations. Also, based on the
modified couple stress theory, Thai et al. [19–21] developed size-
dependent models for the plate theories of classic, Mindlin,
sinusoidal and third-order shear deformation to study bending
and free vibration of FG microplates. Using the strain gradient and
higher-order shear deformation theories, a size-dependent model
is developed for free vibration of FG microplates by Sahmani and
Ansari [22]. Jung and Han [23] employed Eringen nonlocal elasti-
city and first-order shear deformation theories to develop a model
for bending and free vibration of sigmoid FG nanoplates. They
presented Navier solutions to illustrate the effects of nonlocal
theory on the mechanical responses of nanoplates. Hosseini-
Hashemi et al. [24] analytically investigated free vibration of FG
circular/annular Mindlin nanoplates for different combinations of
simply supported, clamped and free boundary conditions using
Eringen nonlocal elasticity theory. Rahim Nami and Janghorban
[25] studied resonance behavior of FG rectangular micro/nano-
plates with simply supported boundary conditions. They used the
size-dependent theories of nonlocal elasticity and strain gradient.

In this work, exact closed-form solutions of 3-D nonlocal
elasticity are presented for both in-plane and out-of-plane free
vibrations of simply supported FG rectangular micro/nanoplates.
Variations of the elasticity modulus and mass density are assumed
to be exponential through the plate thickness. Appropriate dis-
placement fields are introduced to satisfy the edges boundary
conditions for both in-plane and out-of-plane modes. Using the
introduced displacement fields, the 3-D equations of motion are
reduced to ordinary differential equations. The effects of gradient
index of material properties, nonlocal parameter and length-to-
thickness ratio on the natural frequencies of FG micro/nanoplates
are investigated.

2. Problem formulation

Consider a simply supported rectangular FG micro/nanoplate
with the length of l, width of b and thickness of h. A Cartesian
coordinate system (x, y, z) is employed to extract mathematical
formulations while x and y coordinates are taken in the bottom
plane of the micro/nanoplate.

To obtain an analytical solution, it is assumed that the elasticity
modulus and mass density vary with the exponential law through
the thickness of micro/nanoplate as

ϕ ρ ρ ϕ= =E E z zexp( ), exp( ) (1)0 0

where ϕ is the gradient index of the material properties, and E0
and ρ0 are the elasticity modulus and mass density at the bottom
surface of micro/nanoplate, respectively. Poisson's ratio is assumed
to have a constant value of 0.3 throughout the analysis.

2.1. Nonlocal elasticity equations of motion

In the local elasticity theory, the stress at a point is a function of
the strain at that point, while in the nonlocal elasticity theory, due
to the small-scale effects and atomic forces, the stress at a point is
a function of the strain at all neighbor points of the continuum
body. Nonlocal elasticity theory of Eringen presents a linear
differential form of nonlocal constitutive equations as

μ σ− ∇ =( ) t1 (2)ij ij
2

in which μ = e a( )0
2 is the nonlocal parameter, e0 is a material

constant, a is an internal characteristic length and
∇ = ∂ ∂ + ∂ ∂ + ∂ ∂x y z( / ) ( / ) ( / )2 2 2 2 2 2 2 is Laplacian operator. Moreover,
σij and tij are the nonlocal and local stress components, respectively.

In the absence of body forces, the nonlocal linear 3-D elasticity
equations of motion are expressed as
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where u, v and w are the displacement components along the
three Cartesian axes and t is the time variable. Using the linear
differential operator μ− ∇1 2 in Eqs. (3), the equations of motion
can be obtained in terms of local stresses as
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In the local 3-D theory of elasticity, the stress–displacement
relations are expressed as
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By substituting Eq. (5) into Eqs. (4), the nonlocal elasticity
equations of motion for an isotropic FG material are obtained in
terms of displacements as
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