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H I G H L I G H T S

� We studied the thermodynamics of epitaxial graphene on size-quantized films.
� We showed that in such a system there are kinks of conductivity.
� We showed that in such a system there are thermoelectric power peaks.
� We compared our system with cases of 2D and 3D substrates.
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a b s t r a c t

We investigated the thermodynamic parameters (chemical potential, heat capacity and thermodynamic
potential) and a thermoelectric transport in an epitaxial graphene on the size-quantized metal and
semiconductor films within the framework of simple analytical model. We considered limiting cases of
high and low temperatures. We showed that the chemical potential of epitaxial graphene is smaller than
the chemical potential of isolated graphene at the same carrier concentration. Conversely, the heat ca-
pacity of the epitaxial graphene is greater than the heat capacity of the isolated graphene. We in-
vestigated a conductivity and thermopower of the epitaxial graphene. We showed that in such system
there are the kinks of conductivity and peaks of thermoelectric power. These peaks are several times
greater than those of isolated graphene. We compared our system with cases of 2D and 3D substrates.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The symmetry of graphene crystal lattice and the valence of
carbon atoms leads to unique spectrum for electron excitations [1].
Indeed, the study of the band structure of graphene shows that
graphene is semimetal with linear energy spectrum carrier near K
points of Brillouin zone [2]. This spectrum leads to the different
unique properties of graphene [2,3–11]. Currently, graphene is ac-
tively discussed even for such practical applications as purification
of natural gas [12] and water desalination [13]. Thus, graphene is a
promising material for various practical applications. The study of
epitaxial graphene (EG) is one of the main questions in the physics
of graphene [14–26]. The properties of EG sheets are interesting for

several reasons. First of all, graphene on the surface of metals and
semiconductors can be considered as an effective contact for de-
vices. On the other hand, in order to make full use of the properties
of graphene in electronics, it is necessary to vary the structure,
chemical composition, morphology, etc., that can be done using a
suitable substrate. In addition, there is the limiting of the real ap-
plication of free graphene in the electronics. We are talking about
the absence of the energy gap in the energy spectrum of the car-
riers. The opening of the band gap in the spectrum of graphene is an
actual problem in the physics of graphene. There are many ex-
perimental studies of the electronic properties of EG, for example,
see papers [14–19] and works of group of Walter de Heer.1

In this paper, we will investigate the thermodynamics and
thermoelectric transport in a single-layer graphene formed on the
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surface of a size-quantized metal and a semiconductor films
within the framework of theoretical model. To our knowledge,
such a system has not yet been investigated experimentally. It
must be emphasized that this system can become very interesting
for applications since it has some interesting properties, which
was predicted recent (see, for example, [25,26]).

2. The model of graphene formed on substrate

We investigate the monolayer graphene (MG) formed on the
substrate within the framework of a simple model. In this model,
the MG on the substrate is represented as carbon atoms adsorbed
on this substrate and arranged in a hexagonal structure. Such
model was first proposed by Davydov [20] to study of the elec-
tronic states of epitaxial graphene. In Refs. [20–26], this model was
applied to different cases: epitaxial graphene on metal, epitaxial
graphene on semiconductor, epitaxial graphene on size-quantized
film etc. This model is as follows. A quasi-level of single carbon
atom adsorbed on the substrate surface (adatom) is shifted and
broadens. This is due to hybridization of atom with substrate. In
the framework of Anderson–Newns model, Hamiltonian of system
“adatom-substrate” can be written as follows [27,28]:
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where Ea is the adsorbate's orbital energy in the vacuum, ϑ is the
intraadsorbate Coulomb repulsion, ckσ

+ (ckσ) is creation (annihila-
tion) operators for substrate electrons for quantum state pσ , aiσ

+

(aiσ) is creation (annihilation) operators for adsorbate's electrons,
V is the hybridization potential (in this paper we assume that the
hybridization potential does not depend on the pσ ), N is the
number of surface atoms in substrate, 1σ = ± is spin quantum
number. Next, we will consider only single spin state, i.e. 1σ = . In
the Anderson–Newns model for the Green function of single
adatom, we have
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is the level shift function, ( )Bρ ε is the
density of states (DOS) of substrate, “P” denotes the principle value
of the integral. Below, 0aε = is accepted. An electron exchange
occurs between carbon adatom arranged in the hexagonal struc-
ture. Thus, the Brillouin zone of MG on the substrate is formed. To
determine the Green's function of the system perturbed owing to
the electron exchange, the Dyson equation is used in the approx-
imation where only the direct exchange between the nearest
neighboring atoms is taken into account
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where t til = is the in-plane hopping energy (tE2.8 eV). In view of
the symmetry of the graphene crystal lattice and G Gi

0
0= , the

Fourier transform of the Dyson equation gives
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where

( )( )( )qf q a q a q a( ) 3 2 cos 3 4 cos 3 /2 cos 3 /2b x x yν= + + ,

a 1.42 Å≈ is the carbon–carbon distance, q is the two-dimensional
wave vector of electrons of graphene, bν is the band index: 1bν = +
corresponds to the conduction band and 1bν = − corresponds to

the valence band, γ is a small residual scattering rate (scattering on
phonons, impurity atoms, defects of the crystal lattice, etc.). The
energy spectrum near the Dirac point with the coordinate

( )Q a a2 /3 , 2 /3 3π π= is given by the expression:

k k ktf ta( ) 3 /2b b Fν ν υ= = ℏ , where k q Q= − .

3. The substrate density of states and shift function

We assume that the film lies in the plane XY. For the electron
energy of the conduction band of the film, we have:

( )E p m p p( ) (2 ) , (5)x y i
1 2 2 ε= + +−

where p p p( , )x y= is the two-dimensional momentum of electrons
in film, m is the electron effective mass, iε is the electrons energy
along the OZ axis. Further, we will use for the lateral potential the
hard box approximation, i.e. i m L/2i

2 2 2
2ε π= ℏ ⊥ , m⊥ is the electron

effective mass along the OZ axis, L is the film thickness. For the
spectral function, we have
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where χ is the residual scattering in the substrate. To get the DOS,
it is necessary to integrate Eq. (6) over the two-dimensional phase
space of the conduction band
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where Δ is the half-width of the band gap in a semiconductor
substrate (we consider the intrinsic and direct-gap semi-

conductors), S a3 3 /41
2= is the film area corresponding to one

atom of graphene, L1 is the interaction length of graphene with the
substrate (length of 2pz orbital of carbon atom). Similarly, for the
valence band, we have
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For the total DOS, we obtain
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The S L L/1 1 factor in these formulas has the following origin. The
function ( )ρ ε in ( )Λ ε and ( )cΓ ε is the substrate DOS corresponding
to one atom of graphene (this is why S S1= in Eqs. (7) and (8). In
other words, this is DOS, corresponding to the region of substrate,
with which graphene atom interacts. If we introduce the L1, then,
obviously, the volume of 3D substrate corresponding to one gra-
phene atom is equal to S L1 1. The corresponding DOS of 3D metal

( 0Δ = !) at 0χ = is S L m2 /( )1 1
3/2 2 3ε π ℏ . On the other hand, we

have
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Using this expression, we can obtain from Eq. (9) the correct
expression for the DOS of 3D metal. In this paper, we consider the
simply case when point 0ε = (zero energy in substrate electronic
DOS) coincides with the Dirac point. Moreover, we assume that
L 2 Å1 ≈ . When 0χ → , we have
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