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H I G H L I G H T S

� The quantum capacitance of the monolayer graphene for arbitrary magnetic field, temperature, LL broadening and realistic splitting of LL spectrum is
calculated. Magnetic field measurements of the quantum capacitance at high- and low- temperature modes are consistent with our approach.
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a b s t r a c t

The quantum capacitance of the monolayer graphene for arbitrary carrier density, magnetic field, tem-
perature and LL broadening is found. The density dependence of the quantum capacitance is analyzed
when magnetic field (temperature) is fixed (varied) and vice versa. High-field induced splitting of the LL
energy spectrum is examined. The theory is compared with the experimental data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, a great deal of interest has been focused on the
electric field effect and transport in a two-dimensional electron
gas system formed in graphene flake [1]. In the present paper, we
are mostly concerned with the quantum capacitance of the
monolayer graphene placed in the magnetic field. The typical ex-
perimental setup is shown in Fig. 1a. The metal backgate and the
graphene flake are connected via the source of voltage, U, serving
to change the carrier density. According to Refs. [2,3], the energy
spectrum obeys the linear dependence

E k k( ) , (1)υ=

where E(k) is the energy, and k is the distance in the k-space re-
lative to the zone edge (see Fig. 1b), υ is the Fermi velocity. The
k k0 ( 0)> < refers to the electron (hole) conducting bands,
respectively. The state E¼0 is called the Dirac point (DP). It will
be remind that the Fermi energy, μ, in graphene can be varied
either by means of backgate voltage via field–effect [1] or chemical
doping. When 0μ > ( 0)μ < , the Fermi level falls in the electron
(hole) conducting band, respectively. For μ¼0 the Fermi level
coincides with the Dirac point, the density of the conducting
electrons is equal to that of the holes.

Following [4], we plot in Fig. 1c–e the energy diagram for an
arbitrary gate voltage bias. The applied gate voltage U consists of
the voltage drop across the capacitance and the voltage associated
with the Fermi level of the graphene

U Q C e/ / , (2)μ= +

where Q is the charge density of the graphene monolayer,
C d/0= ϵ ϵ is the capacitance per unit area, d is the gate thickness, ϵ0
and ϵ are the permittivity of free space and the relative permit-
tivity of the substrate, respectively. It can be shown [5–8] that Eq.
(2) gives the total capacitance C dQ dU/tot = of the graphene
structure as C C C1/ 1/ 1/tot q= + , where C e dQ d( / )q μ= is the so-
called [5,6] the quantum capacitance. Usually, the condition C Cq≪
is fulfilled, therefore the charge density in the graphene mono-
layer yields the simple relationship Q¼CU known within conven-
tional field–effect formalism. Further, we will discuss the validity
of the field–effect approach.

In general, the graphene can exhibit the charge-neutrality state
Q¼0 at a certain Fermi energy. Without chemical doping, the
neutrality occurs at the Dirac point. For simplicity, we further
neglect the chemical doping.

Using the Gibbs statistics, we can distinguish the components
of the thermodynamic potential for electrons, Ωe, and holes, Ωh,
and, then represent [9] them as follows:
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which gives the electron (hole) concentration as
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Using the graphene density of states (DOS), D E E( ) 2 /0
2 2π υ= | | ,

which includes both the valley and the spin degeneracies, we
obtain

N N F P N( ), ( ), (5)T 1 ξ ξ= = −

where kT/ξ μ= is the degeneracy parameter, Fn(z) is the Fermi
integral and, N kT2/ ( / )T

2π υ= . For two opposite cases of strong
1ξ ≥ and weak 1ξ ≪ degeneracies the electron density yields
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At T¼0 Eq. (6) gives the density of degenerate electrons as
N 1/ ( / )0

2π μ υ= . With the help of Eq. (5) one can easily investigate
the hole carriers case as well.

2. Quantum capacitance at zero magnetic field

Let us calculate the quantum capacitance based on the defini-
tion C e dQ d( / )q μ= , where Q e N P( )= − is the total charge density.
With the help of Eq. (5) we reproduce the result reported in Ref.

[10] as

⎡⎣ ⎤⎦C C ln 2(1 cosh ) , (8)q 0 ξ= +

where C e D e N kT( ( )/ ) /T0
2 2μ ξ= = is the dimensional unit of the

capacitance. In Fig. 2 (main panel), we plot the dependence of the
dimensionless quantum capacitance c C C/q q 0= vs. reduced Fermi
energy ξ. The dependence is V-shaped. For degenerated carriers

1ξ| | ≫ the quantum capacitance obeys the linear asymptote cq ξ=
shown by the dashed line in Fig. 2. Then, in the vicinity of the Dirac
point 1ξ| | ≪ Eq. (8) provides the capacitance minimum as
c 2 ln 2q

min = .
Overwise, we can represent the quantum capacitance cq as a

function of the charge density itself [11] since the latter is closely
related to the gate voltage. With the help of Eq. (5) in Fig. 2 (inset),
we plot the quantum capacitance vs. variable q q 1/2| |− , where
q Q eN/ T= is the dimensionless charge density. In the high-de-
generacy limit 1ξ| | ≫ the quantum capacitance follows the linear
asymptote c q2q = | | shown in Fig. 2 (inset) by the dashed line.
However, for intermediate degeneracies 1ξ| | ≥ the quantum ca-

pacitance obeys somewhat different asymptote c q2( /6)q
2π= | | −

represented by the dotted line. The interchange between both
asymptotes is caused by the degeneracy assisted change in the
carrier density dependence specified by Eq. (6). Then, for non-
degenerated carriers a 1ξ| | ̂ª¡ the dimensionless quantum capaci-
tance remains nearly constant, i.e. c cq q

min∼ within a wide range of

charge densities q q 2 ln 2cr
2| | ≤ = .

Let us now estimate the typical values of the quantum capa-
citance. For bath temperature T¼10 K and velocity

1.15 10 cm/s8υ = × , reported in Ref. [11] we calculate the capaci-
tance minimum C c C 21 nF/cmq

min
q
min

0
2= = and the critical elec-

tron density N q N 7.7 10 cmcr cr T
7 2= = × − . These values are two

orders of magnitude lower compared to respective experimental

Fig. 1. (a) Experimental setup for gated graphene. (b) Band structure at k 0≃ . The energy diagram for (c) U¼0, (d) U 0< and (e) U 0> , where χm is the metal work function,
and Xi is the electron affinity of the insulator.
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