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G R A P H I C A L A B S T R A C T

This paper presents a simple analytical model for TED in microrings. The two-dimensional heat conduction over the thermoelastic temperature gra-
dients along the radial thickness and the circumferential direction are firstly considered in our model.
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a b s t r a c t

Accurate determination of thermoelastic damping (TED) is very challenging in the design of micro-re-
sonators. Microrings are widely used in many micro-resonators. In the past, to model the TED effect on
the microrings, some analytical models have been developed. However, in the previous works, the heat
conduction within the microring is modeled by using the one-dimensional approach. The governing
equation for heat conduction is solved only for the one-dimensional heat conduction along the radial
thickness of the microring. This paper presents a simple analytical model for TED in microrings. The two-
dimensional heat conduction over the thermoelastic temperature gradients along the radial thickness
and the circumferential direction are considered in the present model. A two-dimensional heat con-
duction equation is developed. The solution of the equation is represented by the product of an assumed
sine series along the radial thickness and an assumed trigonometric series along the circumferential
direction. The analytical results obtained by the present 2-D model show a good agreement with the
numerical (FEM) results. The limitations of the previous 1-D model are assessed.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Thermoelastic damping (TED) plays a significant role in the
performance of vacuum-operated micro-resonators because it
determines the quality factor of the resonators. TED is a me-
chanism of structural damping in which energy is dissipated due

to irreversible heat conduction within a vibrating structure. Ac-
curate determination of the thermoelastic damping is very chal-
lenging in micro-electro-mechanical systems (MEMS) design. In
1937 and 1938, Zener [1,2] initially formalized the theory of TED
for the case of a vibrating beam. He presented a simple but ac-
curate model for TED in the beam by retaining only the first term,
as the error due to the series truncation is less than 1.5%. The
analytical model developed by Zener for the beam of thickness h
operating at angular frequency ω is [1,2]
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and k is the thermal conductivity. In 2000, a more sophisticated
version of Zener's model for TED in microbeams was presented by
Lifshitz and Roukes [3] which took into account the fact that the
natural frequency of the microbeam has a slight dependence on
the TED. The analytical model developed by Lifshitz and Roukes
(LR) is [3]
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where h C
k2
vξ = ω . Zener's model and LR's model are now widely

used to predict the TED in microbeams.
Over the past 10 years, the study of TED in micro-resonators

has been an active topic in MEMS area [4–32]. The studies for the
TED in micro-resonators can be classified into two groups. The first
group predicted the TED in micro-resonators by using the finite
element method (FEM). The second group devotes to obtain an
easy-to-use analytical model for calculating the TED in micro-re-
sonators. The FEM methods can deal with complex geometries and
boundary. However, the FEM model of the MEMS devices is non-
transparent and cumbersome. In fact, many micro-resonators are
made of a simple beam or a simple plate. In this case, the analy-
tical models for the simple beam and the simple plate can provide
a better understanding for the physical properties of the thermo-
elastic damping. Up till now, many analytical models for the TED in
microbeams and microplates have already been developed [4–
12,28–32].

Mircorings are also widely used in many micro-resonators. For
example, the thin silicon rings are the components of many vi-
bratory micro-gyroscopes [33,34]. The main performance of the
vibratory microrings is their mechanical quality factor. To obtain a
high quality factor, many micro-gyroscopes are designed to oper-
ate in vacuum in order to avoid air damping. In this case, ther-
moelastic damping becomes the most critical energy loss me-
chanism in the microring gyroscopes. The microrings in gyro-
scopes are usually operated at the in-plane flexural-mode. In the
past, three analytical models for the TED in microrings with the in-
plane vibration have been developed. Next, we summarize the
three works for TED in the microrings.

In 2004, Wong et al. [11] first investigated the TED in silicon
microrings with in-plane vibration. They found that the results
from Zener's model are in good agreement with experimental data
over a wide range of ring sizes and temperatures. Using Zener's
model, the effect of ring dimensions and operating temperature on
the TED in ring are explored.

In 2006, Wong et al. [35] provided a comprehensive derivation
for TED in microrings with the in-plane vibration. Their derivation
showed that Zener's model and LR's model are both reasonable for
TED in microrings. The difference between the results obtained by
the two models is no more than 2% for the thin rings operated at
low modes.

In 2010, Kim et al. [36] developed an analytical model for the
thermoelastic damping in a rotating thin ring with in-plane vi-
bration. They investigated the effect of rotating speed on the TED,
and explored the relationship between ring sizes, mode numbers,
ambient temperatures and quality factor.

However, all the above-mentioned papers [11,35,36] are based
on the one-dimensional approaches proposed by Zener [1,2] and

improved by LR [3]. In Zener's and LR's work, only the heat con-
duction along the thickness of the beam was considered. In the
previous works [11,35,36], only the heat conduction along the
radial thickness of the microring was considered. This paper pre-
sents a new analytical model for thermoelastic damping in mi-
crorings with in-plane vibration. The two-dimensional heat con-
duction over the thermoelastic temperature gradients along the
radial thickness and the circumferential direction are considered
in the present model. The outline of this work is as follows. For the
thin rings operating at the nth natural frequency, Section 2 first
gives a brief review of the previous 1-D model for TED in mi-
croring with one-dimensional heat conduction, and then presents
a new analytic model for TED in microring with two-dimensional
heat conduction. Section 3 calculates the TED in microrings using
the present 2-D model and the previous 1-D model, and compares
the analytical results with those numerical results calculated by
the FEM model. Finally, the significant insights of this paper are
given in Section 4.

2. Problem formulation

Fig. 1 shows a schematic diagram of a microring. The microring
is rectangular in cross-section. The mean radius, radial thickness
and axial depth of the ring are denoted by r0, h and b respectively.
A global polar coordinate system (r, θ, Z) and a local coordinate
system (x, y, z) are also shown in Fig. 1(a) and (b). The z-axis in the
local coordinate system is the same as the direction of the Z-axis in
the global polar coordinate system. The microrings are capable of
both in-plane and out-of-plane flexible vibrations [36,38]. But the
microring in micro-gyroscopes is usually operated at the in-plane
flexural-mode. Therefore this paper treats the in-plane vibration of
the microring.

Under the assumption of r h0⪢ , the bending theory for the thin
beam can be applied to the thin ring operated at the in-plane
flexural-mode. The basic assumptions for the thin ring are as fol-
lows. The plane cross-sections remain plane and perpendicular to
the neutral surface during bending. The shear deformation and the
rotary inertia are neglected.

In micro-resonators, the thin ring is often operated at the nth
mode; thus the radial and tangential displacements of the ring can
be expressed as [35,37]
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If the thin ring is initially at a uniform temperature Tâ, the
temperature field T r z t( , , , )θ in the thin ring can be written as

T r z t T r z t T T r z e( , , , ) ( , , , ) ( , , ) (4)a
j t

0 nθ θ θ= ^ − ^ = ω

where T r z t( , , , )θ^ is the instantaneous temperature and

T r z t T r z e( , , , ) ( , , ) j t
0 nθ θ= ω is the temperature variation from Tâ.

The temperature field T r z t( , , , )θ is governed by the equation of
heat conduction [38]
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, v is Possion's ratio, e is the

cubic dilation, which is defined as
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