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Abstract

Clustering of gene expression data collected across time is receiving growing attention in the biological literature since time-course experiments
allow one to understand dynamic biological processes and identify genes governed by the same processes. It is believed that genes demonstrating
similar expression profiles over time might give an informative insight into how underlying biological mechanisms work. In this paper, we propose
a method based on functional data analysis (FNDA) to cluster time-dependent gene expression profiles. Consideration of clustering problems
using the FNDA setting provides ways to take time dependency into account by using basis function expansion to describe the partially observed
curves. We also discuss how to choose the number of bases in the basis function expansion in FNDA. A synthetic cycle data and a real data are
used to demonstrate the proposed method and some comparisons between the proposed and existing approaches using the adjusted Rand indices
are made.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Microarray technologies in molecular biology make it possi-
ble to simultaneously measure the expression levels of thousands
of genes for a certain organism. They allow us to gain biolog-
ical insight at the genome scale and to study the behaviour of
thousands of genes simultaneously, under various conditions.
Gene expression can be examined from two points of view, static
and dynamic. The gene expression in static microarray exper-
iments is a snapshot at a single time, whereas, in time-course
experiments the expression profiles of genes are repeatedly mea-
sured over a time period. In particular, time-course microarray
experiments are effective not only in studying gene expression
profile levels over a period of time but also in exploring func-
tions of genes and the interactions with their products. Since
biological processes are dynamic and complex systems, such
characteristics are essential factors in understanding how the
underlying mechanisms regulate cellular processes and gene
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functions. Time-course microarray experiments are the tools for
understanding temporal patterns of gene expression and detect-
ing periodically expressed genes.

A number of statistical methods have been recently pro-
posed to analyze time-course gene expression data. Peddada
et al. (2003) proposed the order-restricted inference method to
cluster and select genes in accordance with temporal or dose pro-
files arisen from microarray experiments. However, the approach
resulted in that the gene profiles with a monotonic pattern but
distinct accelerations in the profiles are identified as the same
cluster. Johansson et al. (2003) treated genes as variables and
employed the method of partial least squares to identify genes
with periodic fluctuations in expression levels, coupled with
the cell cycle in the budding yeast. The measure used for gene
selection was the magnitude of frequencies of sinusoidal func-
tions that fit the cyclically expressed data. Schliep et al. (2003)
used Hidden Markov Models (HMM) that take time dependency
of time-course data into account, where a set of clusters was
obtained by the method of maximum likelihood. Luan and Li
(2003) introduced the mixed-effects model using B-splines to
analyze time-course gene expression data and carried out gene
clustering in the framework of a mixture model. The clustering
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problem is viewed as a mixture model problem by introducing
the cluster indicator to be estimated and to be treated as miss-
ing data in the estimation of the parameter associated with a
mixture model using the EM algorithm. They also compared
the proposed method with the model-based clustering method
proposed by Fraley and Raftery (2002).

In this paper, we propose a unified approach for gene cluster-
ing and dimension reduction based on functional data analysis
(FNDA) to group observed curves with respect to their shapes or
patterns by using the sample information in time-course microar-
ray experiments.1 The fundamental idea behind FNDA is that the
atom, or unit of observation, is considered to be the entire curve
rather than just a set of observations (Ramsay and Silverman,
1997, 2002). Our clustering is built upon a basis-space approach,
which reduces the dimensionality of the data and allows the time
points to be non-equally spaced and to vary between subjects.

We apply this method to a time course microarray data set on
the yeast cell cycle, and demonstrate that our method is able to
identify tight clusters of genes with expression profiles focused
on particular phases of the cell cycle.

2. Methods

2.1. Functional data analysis

Functional data refer to data in which each observation is
a partially observed function or curve on some interval where
these functions are often assumed to be smooth. What distin-
guishes FNDA from other conventional statistics is the datum
or data unit. Many statistical methods treat numbers or vectors
as the units of data. In FNDA, however, data units are func-
tions or curves defined on some interval, rather than focusing
on the observed values at particular points in the interval. The
nature of functional data makes it necessary to consider function
spaces such as Hilbert spaces, and each functional observation
is viewed as a realization generated by a random mechanism in
these spaces. The books by Ramsay and Silverman (1997, 2002)
give useful accounts of the basic considerations of FNDA.

FNDA has a wide range of flexibility in the sense that the
observation times are not required to be equally spaced for the
subjects, and furthermore, these times can vary from one sub-
ject to another. Functional data do not necessarily assume that
the values observed at different times for a single subject are
independent although it often assumes that data from different
subjects are independent.

Consider the situation where we observe sample curves which
are partially observed on the subset of the interval. Let {X(t),
t ∈ T} be a second order stochastic process defined on T, e.g.,
X ∈ L2[a, b]. The stochastic process is a collection {X(t), t ∈ T}
defined on a common probability space (Ω, F, P), where (Ω, F)
is a measurable space and P is a measure on F with P(Ω) = 1. In
order to clarify the use of the index sets in stochastic processes,
one needs to write X(t) as a function X(ω, t) of two variables,

1 FNDA is an acronym for functional data analysis instead of FDA because
FDA traditionally stands for US Food and Drug Administration.

where t is the time and ω ∈ Ω is the random element. For fixed
t ∈ T, the function X(·, t) is a measurable map from Ω into �.
For fixed ω ∈ Ω, the function X(ω, ·) becomes a sample path of
the stochastic process. Denoted by μ(t),

μ(t):=EX(ω, t) =
∫

X(ω, t) dFX,

for fixed t, where FX is the distribution function of a probability
P on (Ω, F).

For fixed ω, a sample path X(ω, t) is an equivalent class of
functions in the function space L2. Since functions in the space
can be expressed in terms of basis functions generating the space,
a separable Hilbert space, each function in the space can be
written as a countable linear combination of the basis functions.
Let {φk} be a set of basis functions of L2, then we see that for
each X(ω, t) with fixed ω, there is a unique cT = (c1, c2, . . .) ∈ l2

such that

X(t) =
∞∑

k=1

ckφk(t),

where l2 is a discrete analogue of L2 space. It should be empha-
sized that the stochastic process is decomposed into two parts
ck and φk(t), and the random mechanism only involves in the
coefficients ck = ck(ω) unless setting ω to be fixed.

Once the representation by basis functions is adopted, three
types of computational issues need to be addressed: (a) choos-
ing an appropriate type of basis function, (b) determine the
number of basis functions, and (c) computing the best linear
combination.

The choice of the number of basis functions clearly has impli-
cations in determining the assumed underlying smoothness of
the process and the degree of dimension reduction provided by
the basis representation. Ramsay and Silverman (1997) sug-
gest that 20–30 basis functions are in general enough to extract
prominent features. In this paper, we propose a way to select the
number of basis functions analogous to determining the num-
ber of clusters using the Bayesian information criterion (BIC)
in model-based clustering illustrated below. In this context, the
number of basis functions with the maximum BIC score is
selected for representing functional data as basis functions.

Choosing a basis is a more controversial issue since no basis
will be universally optimal for all data sets. However, there are
advisable guidelines depending on specific occasions. For exam-
ple, if the paths are uniformly smooth with limited features and
especially if the curves appear to be periodic, then the Fourier
basis seems to be a good choice. On the other hand, a spline basis
or a wavelet basis may be a better choice if there are a number of
local features which may be relevant for the statistical analysis.
Note that for some basis functions, more computationally effi-
cient alternatives are available (e.g., FFT for Fourier and DWT
for wavelet). We may write

X(t) ≈
K∑

k=1

ckφk(t), (1)
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