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H I G H L I G H T S

� The influence of Rashba effect on
bound polaron in a quantum pseu-
dodot is studied.

� We have used the Lee–Low–Pines
unitary transformation method and
the Pekar type variational proce-
dure.

� The ground state energy is de-
creased with raising the Coulomb
bound potential.

� The ground state energy increases
when the wave vector is increasing.

� The ground state energy splits into
two branches due to the Rashba
effect.

G R A P H I C A L A B S T R A C T

We have studied the influence of the Rashba effect on bound polaron in a quantum pseudodot. We have
used the Lee–Low–Pines unitary transformation method and the Pekar type variational procedure and
derive an expression for the bound polaron ground state energy.
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a b s t r a c t

In the present work, the influence of Rashba effect on bound polaron in a quantum pseudodot is studied.
Using the Lee–Low–Pines unitary transformation method and the Pekar type variational procedure, we
have derived an expression for the bound polaron ground state energy. The ground state energy as
functions of the wave vector, the electron–phonon coupling strength, and quantum confinement size is
obtained by considering different Coulomb bound potentials. It is found that (i) the ground state energy
is decreased with raising the Coulomb bound potential, the electron–phonon coupling strength, and
quantum confinement size. (ii) The ground state energy increases when the wave vector is increasing.
(iii) The ground state energy splits into two branches (spin-up and spin-down) due to the Rashba effect.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

With recent rapid advances of modern technology like mole-
cular beam epitaxy and metal-organic vapor deposition, the in-
vestigation of low-dimensional quantum structures has aroused
great interest in theory and experiment [1–4]. Examples of low-
dimensional quantum structures are quantum wells, quantum
wires, quantum dots and quantum pseudodots. It is fully known
that some physical properties of the low-dimensional quantum
systems such as optical and electron transport characteristics are
quite different from those of the bulk material due to the small

structures of the systems.
In the past few years, the study of electronic and optical

properties of nanostructures under various conditions (magnetic
field, electric field, impurity, and electron–phono and interaction)
has attracted an increasing interest. Since the electron–phonon
interaction is increased by the geometric confinement, much at-
tention has been focused on the polaron effect in nanostructures.
There is a large amount of work on polaron effect in nanos-
tructures. For example, Chen and Xiao [5] studied the temperature
dependence of the binding energy of an impurity bound magne-
topolaron in a GaAs parabolic quantum dot. Cai et al. [6] calculated
energy levels and the transition frequency between relevant levels
of the strong-coupling polaron in a quantum dot. The transition
frequency of the strong-coupling magnetopolaron in quantum
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rods was investigated recently by Xiao and Xiao [7].
It is fully known that the polaron effect plays an important role

in the physical properties of low-dimensional semiconductor
structures. To study the polaron effect, there are several theoretical
methods. In this regard, authors have applied the variational
method of the Pekar-type [8,9] and linear combination operator of
the Huybrechts [10]. The former has been used for first time by
Landau and Pekar to study the properties of the strong-coupling
polaron. In the latter, Huybrechts [10] has investigated the prop-
erties of the first internal excited state of optical polaron by using
linear combination operator method. To obtain more information
about polaron effect, the reader can refer to [11–14].

One of the most interesting problems in the condensed matter
physics is the study of spin–orbit interaction and its effect on
polarons in various nanostructures. A type of spin–orbit interac-
tion prominent in certain quantum well heterostructures is the
Rashba interaction [15–17]. This type of spin–orbit interaction is
originating from the space inversion asymmetry and it plays a
fundamental role in semiconductor spintronics.

In recent years, the Rashba effect in low-dimensional semi-
conductor structures has attracted great attention. For example,
Pietilainen and Chakraborty [18] studied energy levels and mag-
neto-optical transitions in parabolic quantum dots with spin–orbit
coupling. Kushwaha [19] investigated the effect of the Rashba-type
spin–orbit interaction on the Fock–Darwin energy spectrum in the
parabolically confined quantum dots. Chakraborty and Pietilinen
[20] investigated the influence of the Bychkov–Rashba interaction
on a few interacting electrons confined in a quantum dot. More-
over, significant experimental progresses have been achieved in
generating large spin polarizations, in demonstrating the Rashba
splitting and also in using the splitting for manipulating the spins.
For instance, de Andrada e Silva et al. [21] demonstrated that the
Rashba effect is present only in semiconductor heretostructures
where there is a lack of inversion symmetry in the growth direc-
tion. Koga et al. [22] reported a combined low-temperature
scanning tunneling spectroscopy angle-resolved photoemission
spectroscopy investigation of the 3 3× R300Pb/Ag(1 1 1) sur-
face alloy which provides a giant Rashba-type spin splitting. Nitta
et al. [23] proposed a spin-interference device allowing consider-
able modulation on the electric current. This device is a one-di-
mensional ring connected with two external leads, made of
semiconductor structure in which the Rashba SO interaction is the
dominant spin-splitting mechanism. Papadakis et al. [24] studied
spin splitting due to Rashba spin–orbit coupling in detail via
Shubnikov–de Haas oscillations including also anisotropic prop-
erties of the magnetoresistance. For more information, the reader
can refer to [25–28].

It should be noted that there have been much work about the
influence of the Rashba effect on the electron system. However,
the study of the effect of the Rashba spin–orbit interaction on the
polaron is quite rare so far. Hence, the purpose of the present
paper is to investigate the Rashba effect on bound polaron in a
quantum pseudodot using Lee–Low–Pines unitary transformation
method and the Pekar type variational method. The paper is or-
ganized as follows. We first obtain the expression of the ground
state energy of the polaron. Then, our numerical results are pre-
sented and discussed. Finally, a conclusion is drawn in our
investigation.

2. Description of the model

Consider a quantum pseudodot of polar semiconductor in the
presence of the Rashba spin–orbit interaction. An electron is
bound to a hydrogenic donor-impurity center in the system, and it

is interacting with bulk longitudinal optical (LO) phonons. Within
the framework of effective mass approximation, the Hamiltonian
of the system can be written as

H H H H H . (1)e LO e LO R= + + +−

In Eq. (1) He is the Hamiltonian of the bound electron without
phonons and is written as
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where mn is the electron band-effective mass, e r/2
0ε− is the Cou-

lomb bound potential and P is momentum of the electron. V r( ) is
the pseudoharmonic potential, that includes both harmonic
quantum dot potential and antidot potential, and it is written as
[29]
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where V0 is the chemical potential of the two-dimensional elec-
tron gas and r0 is the zero point of the pseudoharmonic potential.

It is worth mentioning that both quantum dot (QD) and
quantum pseudodot (QP) are small enough to exhibit quantum
mechanical properties. Specifically, their excitons are confined in
all two or three spatial dimensions. Electronic characteristics of
quantum dot (or quantum pseudodot) are related to its size and
shape. For example, the band gap in a quantum dot (or quantum
pseudodot) which determines the frequency range of emitted light
is inversely related to its size. The frequency of emitted light in-
creases as the size of the quantum dot (or quantum pseudodot)
decreases. It should be noted that a quantum pseudodot consists
of a quantum dot and a quantum antidot. An electron in a quan-
tum pseudodot including not only harmonic potential but also
antidot-potential exhibits some interesting results.

The second and the third terms in Eq. (1) show the LO-phonon
field and the interaction energy of the electron–LO phonon. They
are given by
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where a a( )q q
+ are the creation (annihilation) operator of the bulk

LO phonon with wave vector q and frequency LOω . Also, Vq in Eq.
(5) is expressed as
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where V is the volume of the crystal and α is the electron–LO
phonon coupling strength and is given by
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Here ε0 and ε∞ are the static dielectric constant and high frequency
adiabatic constant, respectively.

The last term in Eq. (1) describes the Rashba spin–orbit inter-
action and is expressed as [15]

H k k( ), (8)R R x y y xα σ σ= −

where Rα is the Rashba spin–orbit coupling constant and sx, sy are
the Pauli matrices. Here, we use the notations ix yσ σ σ= ±± ,
P P iPx y= ±± and write Eq. (8) in the following form:
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