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H I G H L I G H T S

� It is specified a cylindrical geometry
in samples of Si and GaN in the
macro to nano-scales.

� The study of the thermal conductiv-
ity and its influence on the figure-of-
merit in thermoelectric devices.

� The thermal conductivity is strongly
dependent on the cylinder radius.

G R A P H I C A L A B S T R A C T

The thermal conductivity is strongly dependent on the ratio of the cylinder radius R to a characteristic
length ℓ, the latter given approximately by the velocity of sound times a kind of relaxation time (energy
Maxwell time) which has values in the order of hundreds of nanometers.
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a b s t r a c t

An analysis of the influence of geometry and size on the thermal conductivity in semiconductors,
particularized to the study in Si and GaN, is presented. This is done in the framework of a higher-order
generalized hydrodynamics (HOGH) of phonons in semiconductors, driven away from equilibrium by
external sources. This HOGH is derived by the method of moments from a generalized Peierls–Boltzmann
kinetic equation built in the framework of a Non-Equilibrium Statistical Ensemble Formalism. We
consider the case of wires (cylindrical geometry) exploring the effect of size (radius), particularly in the
nanometric scale when comparison with experiment is done. Maxwell times, which are quite relevant to
define the hydrodynamic movement, are evidenced and characterized.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It has been noticed [1] that the ceaseless innovation in semi-
conductor design creates a demand for a better understanding of the
physical processes involved in materials with constrained geometries
and functioning in far-from-equilibrium conditions. A particular
question is the one of thermal transport in small semiconductor

devices [2] and data centers [3], used in refrigeration processes in
microprocessors [4,5]. The heat generated by silicon chips in inte-
grated circuits must be efficiently removed once the performance of
modern electronic devices degrades as the temperature increases.
One approach for providing active cooling in chips consists in the use
of thermo-electric materials, which effectively transport heat via
charge-current flow [6].

These questions belong to the area of nonequilibrium phonon
dynamics [7] or, more precisely, to the subject of phonon hydro-
thermodynamics (that is, hydrodynamics associated to nonequilibrium
“irreversible” thermodynamics) [8–10]. The hydro-thermodynamics of
phonons, driven away from equilibrium by external sources, is built
resorting to a theory, the one used in the present work, which, for the
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sake of completeness is summarized in the next section. It is based a
nonlinear quantum kinetic theory [11–13] built on the basis of a Non-
Equilibrium Statistical Ensemble Formalism (NESEF for short) [14–17].
It follows from the solution via the moments method of a generalized
NESEF-based Peierls–Boltzmann kinetic equation for the single-
phonon distribution function, to obtain such higher-order phonon
hydro-thermodynamics. In a contracted description, meaning using
the one of order 1, the solution of the evolution equations of the
hydrodynamic motion is obtained; this is described in Section 3. In
Section 4 we consider a particular constrained geometry and the
thermal conductivity in nanowires is analyzed and compared with
experiments. Maxwell times, which are quite relevant to the definition
of the hydrodynamic motion, are evidenced and characterized.

2. Summary of a phonon mesoscopic hydro-thermodynamics

We consider a system of longitudinal acoustic LA phonons in a
semiconductor in anharmonic interaction with the accompanying
transverse acoustic TA phonons. The sample is in contact with a
thermostat at temperature T0. An external pumping source drives
the LA phonon system out of equilibrium. The system is character-
ized at the microscopic level by the Hamiltonian

Ĥ ¼ ĤOSþĤOBþĤSBþĤSP ; ð1Þ

which consists of the Hamiltonian of the free LA phonons

ĤOS ¼∑
q
ℏωqða†qaqþ1=2Þ; ð2Þ

where ωq is the frequency dispersion relation and the sum on q
run over the Brillouin zone, and the one of the TA phonons, which
we call the thermal bath in which the LA phonons are embedded,
given by

ĤOB ¼∑
q
ℏΩqðb†qbqþ1=2Þ; ð3Þ

where Ωq is the frequency dispersion relation; a†q(aq) and b†q(bq)
are the corresponding creation (annihilation) operators in mode q.

Moreover, the interaction of the LA phonons with the thermal
bath is given by

ĤSB ¼ ∑
k;q

Mk;qaqb
†
kþqb

†
�kþhc; ð4Þ

where we have retained the only process that contributes to the
kinetic equations ðla⇆taþtaÞ and we have neglected nonlinear
contributions;Mk;q accounts for the coupling strengths. Finally ĤSP

is the interaction energy operator for the phonons and an external
pumping source, to be specified in each case.

At the macroscopic level (the nonequilibrium thermodynamic
state) NESEF requires first to specify the basic variables that are to
be used to characterize the nonequilibrium ensemble [14–17]. A
priori, when the system is initially driven away from equilibrium,
it is necessary to include all the observables of the system what is
attained introducing many-particle dynamical operators [18,19];
in the present case it suffices to take only the single-phonon
dynamical operators ν̂q;Q ¼ a†qþQ=2aq�Q=2 in the second-
quantization representation in reciprocal space. The two-phonon
dynamical operator and higher-order ones can be ignored because
of Bogoliubov's principle of correlation weakening [19]. Moreover,
for bosons it would be necessary to also include the amplitudes a†q
and aq because their eigenstates are the coherent states [20], and
the boson pairs [21], both are disregarded because they are of no
practical relevance for the problem considered here. In Appendix A
we describe the corresponding nonequilibrium statistical operator.
Another basic microdynamical variable that needs be incorporated

is the energy of the bath, and then the basic set is composed of

fν̂q; ν̂q;Q ; ĤOBg; ð5Þ
with Qa0, where we have separated out the so-called popula-
tions, ν̂q ¼ a†qaq, from those with Qa0 which are related to the
change in space of the populations (they are also called coherences
[22]).

The average values of the microdynamical variables in set
(5) over the nonequilibrium ensemble provide the variables that
characterized the nonequilibrium macroscopic state of the system,
which we indicate by

fνqðtÞ;νqQ ðtÞ; EBg; ð6Þ
and are also introduced, see Appendix A, the nonequilibrium
thermodynamic variables conjugated to those above, which we
designate as

fFqðtÞ; FqQ ðtÞ;β0g; ð7Þ
with β�1

0 ¼ kBT0.
Going over to direct space (anti-transforming Fourier in vari-

able Q) we obtain the space and crystalline momentum-
dependent distribution function νqðr; tÞ, in terms of which is built
the phonon Higher-Order Hydro-Thermodynamics which consists
of two families of hydrodynamical variables, namely, the one
associated to the quasi-particles (the phonons) motion (we call it
the n-family)

fnðr; tÞ; Inðr; tÞ; fI½ℓ�n ðr; tÞgg; ð8Þ
where ℓ¼ 2;3;…, nðr; tÞ stands for the number of phonons at time
t in position r, namely

nðr; tÞ ¼∑
q
νqðr; tÞ; ð9Þ

the first flux of this quantity is

Inðr; tÞ ¼∑
q
½∇qωq�νqðr; tÞ; ð10Þ

and the higher-order fluxes are

I½ℓ�n ðr; tÞ ¼∑
q
u½ℓ�ðqÞνqðr; tÞ; ð11Þ

with ℓ¼ 2;3;…, defining the ℓ�order flux (ℓ�rank tensor) and
where

u½ℓ�ðqÞ ¼ ½∇qωq : …ℓ�times… : ∇qωq�; ð12Þ
is a ℓ�rank tensor consisting of the tensorial inner product of
ℓ�times the group velocity of the q-mode phonon, ∇qωq.

On the other hand we do have the family associated to the
energy motion (heat transport, and we call it the h-family)

fhðr; tÞ; Ihðr; tÞ; fI½ℓ�h ðr; tÞgg; ð13Þ
where

hðr; tÞ ¼∑
q
ℏωqνqðr; tÞ; ð14Þ

Ihðr; tÞ ¼∑
q
ℏωq½∇qωq�νqðr; tÞ; ð15Þ

I½ℓ�h ðr; tÞ ¼∑
q
ℏωqu½ℓ�ðqÞνqðr; tÞ; ð16Þ

which are, respectively, the energy density, its first (vectorial) flux,
and the higher-order (ℓ¼ 2;3;…) tensorial fluxes at time t in
position r.

Consequently, the hydrodynamic equations of motion (evolu-
tion equations for the quantities above) are

∂
∂t
I½ℓ�p ðr; tÞ ¼∑

q
K ½ℓ�
p ðqÞ ∂

∂t
νqðr; tÞ; ð17Þ
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