
Controlling the transport gap of wedge-shaped graphene
nanoconstriction by strain

Baihua Gong a,b,n, Xin-Hui Zhang c, Shengli Zhang a,b

a Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
b MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
c School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China

H I G H L I G H T S

� Numerical computation shows that wedge-shaped graphene nanoconstrictions (WGNCs) have a transport gap decreasingly dependent on the
transverse strain.

� An analytical formula of the transport gap as a function of transverse strain is obtained confirming the numerical results.
� The transport gap is inversely proportional to the width of the WGNC, while having nothing to do with other geometry parameters.
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a b s t r a c t

The Landauer transport theory is used to study the electron transmission of wedge-shaped graphene
nanoconstrictions (WGNCs) under transverse strain. It is found that WGNCs have a transport gap
decreasingly dependent on the strain. Further analysis shows that the strain dependence of the transport
gap origins from the sensitiveness of confined states to strain. And on this basis, an analytical formula of
the transport gap as a function of transverse strain is obtained confirming the numerical results. Our
results suggest that WGNCs can be useful for the future graphene-based nanoelectromechanics.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Apart from its excellent electronic properties, graphene has
attracted much interest recently due to its exceptional mechanical
performance [1–3]. Graphene has been confirmed as the strongest
material being able to sustain as high as 30% strain [4], and recent
experiments show that reversible and controlled strain can be
produced in graphene with measurable impact on its electronic
structure and transport properties [5–9]. These experimental
works reveal the potential of strain in controlling graphene's
electronic properties, offering a tempting prospect for the applica-
tion of graphene in nanoelectromechanics.

Motivated by experimental progress, much theoretical research has
been done to understand the underlying physics of strain effects on
graphene's electronic properties, which is crucial to fabricate
graphene-based nanoelectromechanical devices of customized

functionality. Among other factors, edge shape plays an important
role in the mechanism that strain modulates the electronic properties
of graphene-based devices. For example, uniaxial strain modifies the
band gap of armchair graphene nanoribbons (AGNRs) in a periodic
way, while has little influence on the low-energy band structure of
zigzag graphene nanoribbons (ZGNRs) [10]. This distinctness origins
from the fact that the low-energy bands of ZGNRs are contributed by
the edge states associated with the zigzag borders, which are robust
against uniaxial strain. In this sense, it seems that ZGNRs, compared
with AGNRs, are unsuitable to be used in graphene nanoelectrome-
chanical devices [10–12].

In this paper, we propose that the insusceptibility of ZGNRs'
electronic properties to strain can be overcome by etching the ZGNRs
into wedge-shaped graphene nanoconstrictions (WGNCs), e.g., see
Fig. 1. WGNCs have a transport gap where the conductance is totally
suppressed [13], and moreover, we will show that this gap is
monotonically dependent on transverse strain, i.e., compression
enlarges the gap while tension reduces it. Further analysis reveals
that the energy interval of transport gap of WGNCs is exactly identical
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to the energy interval of edge states of ZGNRs with the same width,
indicating that in WGNCs edge states are totally reflected while
confined states are partially transmitted. Thus the strain-dependence
of transport gap of WGNCs can be deduced from the corresponding
strain-dependence of energy bands of ZGNRs. The monotonic depen-
dence of transport gap of WGNCs on strain has potential application in
nanoelectromechanical devices, especially when a graphene-based
transistor with a tunable on-off conductance ratio is needed.

The rest of the paper is organized in the following way. In
Section 2, we introduce a tight-binding model for strained WGNCs
and the computational method. We then present the main results
and give a simple analysis of the dependence of WGNCs' transport
gaps on transverse strain in Section 3. In the end, a brief summary
is provided in Section 4.

2. Model and method

The geometry studied in this paper is schematically shown in
Fig. 1, it consists of the left and right semi-infinite ZGNR leads, and
the middle constriction region. Three vectors connecting A sites to
B sites are
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where a is carbon–carbon bond length. A nearest-neighbor tight-
binding model is employed here to describe the device

H¼ �∑
〈i;j〉
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þ
i aj; ð2Þ

where tij is transfer integral between neighboring atoms i and j.
The zero-temperature ground state of electrons at zigzag edges is
spin-polarized [14], however, this spin-polarized state is unstable
with respect to the spin-unpolarized states at finite temperature
[15]. Hence we focus on the spin-unpolarized states in the
following.

The uniaxial strain in graphene plane has a tensor form [16]

ϵ¼ ϵ
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where θ is the direction of the strain with x-axial, and ν¼ 0:165 is
Poisson's ratio [17]. For transverse strain, θ equals π/2 and the
strain tensor can be written as
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A general vector v0 in the undeformed graphene plane has its
deformed counterpart v¼ ð1þϵÞ � v0, thus the three bond lengths
under transverse strain (4) change into
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The change of the bond lengths results in variation of the hoping
energies, which can be modeled by the inverse-square relation
ti ¼ t=ðri=aÞ2 [18], where t is the hopping energy of the
unstrained bond.

For calculating electron transport in nanometer-sized devices,
the natural framework is the Landauer formula which relates the
conductance G(E) to the transmission T(E) [19]

GðEÞ ¼ 2e2

h
TðEÞ; ð6Þ

where TðEÞ ¼∑TiðEÞ is the total transmission at energy E and is
equal to the sum of the transmission probabilities across every
conducting eigenchannel. When scattering is absent, i.e., TiðEÞ ¼ 1
for each i, the total conductance becomes Nð2e2=hÞ, where N is the
total number of eigenchannels that are conducting the electrons of
energy E. We calculate T(E) in terms of the recursive Green's
function method which provides high efficiency and accuracy for
numerical calculations.

3. Results and analysis

In Fig. 2, we present the transmission curves of WGNCs,
compared with those of ZGNRs with the same width. From this
figure, it is clear that electron transmission is globally suppressed
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Fig. 1. Schematic diagram of two examples of WGNCs, where r!i, i¼1, 2, 3 are the
nearest-neighbor vectors connecting A atoms to B atoms. The central scattering
regions are indicated by the gray shadow. The width of the left structure is Nc ¼ 35a
and that of the right one is Nc ¼ 29a, where a is carbon–carbon bond length.

Fig. 2. Transmission curves of WGNCs and ZGNRs with the same width: (a) Nc ¼ 35a and (b) Nc ¼ 29a. Arrows in the figure indicate the energy intervals of the transport gaps
of WGNCs as well as those of edges states of ZGNRs.

B. Gong et al. / Physica E 60 (2014) 65–6966



Download English Version:

https://daneshyari.com/en/article/1544234

Download Persian Version:

https://daneshyari.com/article/1544234

Daneshyari.com

https://daneshyari.com/en/article/1544234
https://daneshyari.com/article/1544234
https://daneshyari.com

