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a b s t r a c t

The elastic electron scattering by impurities with electric and magnetic dipoles in graphene is studied
with the help of Born approximation. Both types of scatterers give the nonzero cross section of
backscattering. The scattering by the impurities with electric dipoles is more efficient even comparing to
the scattering by the nanomagnets with anomalous magnetic moments. A comparison of the electron
scattering transport cross sections by charged impurities and impurities with electric dipole moments
shows that they can be comparable. The scattering by the impurities electric dipoles can be important in
limiting the electron mobility in graphene along with the Coulomb scattering.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The elastic electron scattering in graphene by different type of
scatterers has been intensively studied since it was experimentally
isolated (see [1], and references therein). It is known that the
backscattering cross section of massless electrons by the impu-
rities with radially symmetric potentials is equal to zero. But it is
not true for the scattering by electric and magnetic dipoles that
possess non-radially symmetric potentials. Nonzero backscattering
can considerably increase the transport cross section that has a
much larger effect on current than the small-angle scattering [2].

The electron scattering in graphene has been studied via
scattering phases [1,3] and with the help of 2D Born approxima-
tion [3–6]. It is interesting that there are many different versions of
2D Born approximation proposed including the “self-consistent
Born approximation” [7]. Various mechanisms of electron scatter-
ing of massless Dirac fermions have been discussed in Ref. [8].

To study the electron scattering cross section by electric and
magnetic dipoles, we developed our version of the Born approx-
imation for the one layer graphene based on results of Ref. [9]. The
calculated cross sections are not zero for the backscattering in
both cases. Our analysis shows that the scattering by electric
dipoles is more efficient than the scattering by magnetic dipoles.
But only very large nanomagnetic impurities with gigantic mag-
netic moments [10] can provide the scattering cross section
comparable with that one by the electric dipoles. A comparison

of the transport cross sections by Coulomb potential and by
electric dipoles shows that they could be comparable.

The paper is designed as follows. In Section 2, we present the
Born approximation for the scattering problems on the basis of 2D
Dirac like equation of massless electrons. In Section 3, we calculate
the electron cross section by an impurity with radially symmetric
electrostatic potential to compare our result with the known
results [3]. In Sections 4 and 5, we consider the electron scattering
by the impurity with electric and magnetic dipole moments,
respectively. In Section 6, we analyze and compare the obtained
transport cross sections. The conclusion summarizes the results of
the paper.

2. Born approximation

The Hamiltonian of 2D motion of the massless electron in
graphene in the external field U can be written as [1]

Ĥ ¼ vF ŝ � p̂�e
c
A

� �
þU; ð1Þ

where vF is the Fermi velocity, sx ¼ ð01 1
0Þ and sy ¼ ð0i � i

0 Þ are the Pauli
matrices, e and c are the electron charge and speed of light in
vacuum, respectively; p̂ is the 2D momentum operator, A is the
vector potential. The Schrodinger equation corresponding to the
Hamiltonian (1)

ĤΨ ¼ EΨ ; ð2Þ

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

http://dx.doi.org/10.1016/j.physe.2014.02.020
1386-9477/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: vadimmalnev@yahoo.com (V.N. Mal'nev).

Physica E 60 (2014) 214–219

www.sciencedirect.com/science/journal/13869477
www.elsevier.com/locate/physe
http://dx.doi.org/10.1016/j.physe.2014.02.020
http://dx.doi.org/10.1016/j.physe.2014.02.020
http://dx.doi.org/10.1016/j.physe.2014.02.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2014.02.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2014.02.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2014.02.020&domain=pdf
mailto:vadimmalnev@yahoo.com
http://dx.doi.org/10.1016/j.physe.2014.02.020


with

Ψ ¼
ψ1

ψ2

 !
ð3Þ

can be presented as a system of coupled equations

vF π̂ þψ1 ¼ ðE�UÞψ2;

vF π̂ �ψ2 ¼ ðE�UÞψ1; ð4Þ
where ψ1; ψ2 are the wave functions, π̂ 7 ¼ p̂7 �eA7 =c, p̂7 ¼
p̂x7 ip̂y, A7 ¼ Ax7 iAy with p̂x; p̂y and Ax; Ay being the compo-
nents of the momentum operator and the vector potential,
respectively.

Substitution of ψ2 from the first equation of (4) in the second
one and vice versa allows one to decouple system (4)

π̂ �
1

ðE�UÞπ̂ þψ1 ¼
E�U
v2F

ψ1; ð5Þ

π̂ þ
1

E�U
π̂ �ψ2 ¼

E�U
v2F

ψ2: ð6Þ

In the scattering problems we are interested in the solutions of
these equations far from the scattering center, where the energy of
the incident electrons E is much greater than the average potential
energy of the scattering center U . For jU j=Eo1, Eqs. (5) and (6)
can be presented as follows:

π̂ � 1þU
E
þ U2

ðEÞ2
þ⋯

( )
π̂ þψ1 ¼

E2

v2F
1�U

E

� �
ψ1; ð7Þ

π̂ þ 1þU
E
þ U2

ðEÞ2
þ⋯

( )
π̂ �ψ2 ¼

E2

v2F
1�U

E

� �
ψ2: ð8Þ

Taking into account the explicit expressions of π̂ þ and A7 (see
their definitions after system (4)), one can show that

π̂ � π̂ þ ¼ p̂2þe2

c2
A2�e

c
½2A � p̂þℏBz�;

½π̂ þ ; π̂ � � ¼ 2
eℏ
c
Bz; ð9Þ

where Bz ¼ ð∇� AÞz is the z component of the magnetic field and
½π̂ þ ; π̂ � � denotes a commutator. Here we chose the Coulomb
gauge

∇ � A¼ 0: ð10Þ
In the scattering problems, the terms containing the vector

potential A and U are being small compared to the energy of
electron E. We put them in the right hand side of Eqs. (7) and (8)
keeping only terms linear on U/E and obtain the following
equation for functions ψ1;2:

ð∇2þk2Þψ1;2 ¼ V̂ 1;2ψ1;2: ð11Þ
Here we introduced the wave vector k¼ E=ðℏvF Þ and operator

V̂ 1;2 ¼
1
ℏ2

e2

c2
A2�e

c
½2A � p̂7ℏBz�þ

EU
v2F

þ π̂ 8
U
E
π̂ 7

( )
: ð12Þ

It consists of two parts: terms associated with the vector potential
A and the corresponding component of magnetic field Bz trans-
versal to the graphene plane, and terms associated with the
potential energy of electron U. It is worth noting that this part of
V1;2 contains the space derivatives of U. the two Eqs. in (11) are
independent and specify the wave functions ψ1;2 of electrons
belonging to different sublattices of graphene.

At large distances from the scattering center due to the
smallness of the operator V̂ 1;2, the functions ψ1;2 can be presented
as

ψ1;2 ¼ψ ð0Þ
1;2þψ ð1Þ

1;2; ð13Þ

where ψ ð1Þ
1;2 are the small corrections to the functions ψ ð0Þ

1;2,
which satisfy the two Eqs. in (11) with the zeroth right hand side.
If the beam of incident electrons propagates along the x-axis, then
ψ ð0Þ

1;2 ¼ 1=
ffiffiffi
2

p
expðikxÞ. The incident wave function can be written as

Ψ incðxÞ ¼
ψ ð0Þ

1

ψ ð0Þ
2

0
@

1
A¼ 1ffiffiffi

2
p 1

1

� �
expðikxÞ: ð14Þ

The factor 1=
ffiffiffi
2

p
provides the normalization of the wave function

(14) to unity. The wave functions ψ ð1Þ
1;2 satisfy the equation

ð∇2þk2Þψ ð1Þ
1;2 ¼ V̂ 1;2ψ

ð0Þ
1;2: ð15Þ

At large distances from the scattering center, ψ ð1Þ
1;2 have the form

Ψ sc ¼
ψ ð1Þ

1

ψ ð1Þ
2

0
@

1
A¼ expðikrÞffiffiffi

r
p

f 1ðφÞ
f 2ðφÞ

 !
: ð16Þ

The functions f 1;2ðφÞ are analogous to the scattering amplitudes
with the scattering angle φ. They have dimension of the square
root of length and are controlled by the scattering mechanism.

The 2D differential cross section or the differential cross length
is a ratio of the scattered current Jsc through the elementary length
dl (transversal to the radius vector r) and the incident current Jinc

dsðφÞ ¼ Jsc
Jinc

dl: ð17Þ

The incident current is directed along the x-axis and equals to

Jinc ¼ vFΨ
þ
incŝxΨ inc ¼ vF : ð18Þ

The scattered current can be calculated as

Jsc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J2x þ J2y

q
; ð19Þ

where Jx and Jy are the components of the scattered current given
by

Jx ¼ vFΨ
þ
sc ŝxΨ sc;

Jy ¼ vFΨ
þ
sc ŝyΨ sc: ð20Þ

With the help of the wave functions (16), we obtain

Jx ¼
2vF
r

Re½f 1ðφÞnf 2ðφÞ�;

Jy ¼
2vF
r

Im½f 1ðφÞnf 2ðφÞ�: ð21Þ

The differential cross (17) with account of Eqs. (19) and (21) can be
presented as

dsðφÞ
dφ

¼ 2 f 1ðφÞnf 2ðφÞ :j
�� ð22Þ

This formula will be used below for obtaining the cross section of
electron scattering in graphene by impurities with nonsymmetric
scattering potentials.

3. Scattering by impurity with radially symmetric electrostatic
potential

To check the obtained result, we calculate the electron scatter-
ing cross-section by a nonmagnetic impurity with the radially
symmetric electrostatic potential UðrÞ. In this case, operator (12)
with account of A¼0 takes the form

V̂ 1;2 ¼
U
E
k2þ 1

ℏ2p̂8
U
E
p̂7

� �
: ð23Þ

It is convenient to use the rectangular coordinate system with
the x-axis along the incident electron beam. With account of the
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