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H I G H L I G H T S

� Using the thermodynamic approach the Quantum Hall Effect in mono- and bi-layer graphene is studied.
� The magnetic field dependence of zeroth-LL split subbranches is found.
� The magneto-transport problem in the vicinity of the Dirac point is resolved.
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a b s t r a c t

Based on a thermodynamic approach, we have calculated the specific resistivity of mono(bi)-layer
graphene assumed dissipationless in quantizing magnetic field. The resistivity arises from combination
of Peltier and Seebeck effects. The current I causes heating (cooling) at the first (second) sample contacts,
due to the Peltier effect. The voltage measured across the sample is equal to the Seebeck thermoemf, and
thus provides finite resistivity as I-0. The resistivity is a universal function of the magnetic field, e� h
plasma density and temperature, expressed in fundamental units h=e2. At fixed magnetic field the
magneto-transport problem is resolved in the vicinity of the Dirac point taking into account the splitting
of zeroth Landau level. For mono(bi)- layer graphene the B-dependent splitting of zeroth Landau level is
recovered from experimental data.

& 2014 Elsevier B.V. All rights reserved.

Recently, a great deal of interest has been focused on the
electric field effect and transport of two-dimensional electron–
hole gas formed in graphene flake [1]. In the present paper, we are
mostly concerned with the magnetotransport in monolayer and
bilayer graphene in strong magnetic field.

1. Electric field effect in graphene at B¼0

We first focus on the transport properties of monolayer
graphene at B¼0. The typical experimental setup is shown in
Fig. 1(a). The source and drain terminals of the graphene sample
are attached to the current source. The metal backgate and the
drain are connected via the source of voltage, Ug, serving to change
the carrier density in graphene. At low-current mode I-0, the
measured voltage drop, Usd, between the source and drain contacts
allows one to determine the graphene resistance.

According to Refs. [2,3], the monolayer energy spectrum obeys
the linear dependence

E7 ðkÞ ¼ 7EðkÞ ¼ 7ℏυk; ð1Þ

where E(k) is the energy, and k is the distance in the k-space
relative to the zone edge (see Fig. 1(b)). The “7” sign refers to the
electron (þ) and hole (�) conducting bands, respectively. The
monolayer state E¼0 is called the Dirac point (DP). It will be
remind that the Fermi energy, μ, in graphene can be varied either
by means of the backgate voltage via field-effect [1] or by chemical
doping. When μ40 ðμo0Þ, the Fermi level falls into the electron
(hole) conducting band, respectively. For the special case, μ¼0, in
which the Fermi level coincides with the Dirac point, the density
of conducting electrons is equal to that of holes.

At low currents, the voltage drop across the graphene sample is
small as compared to the applied gate voltage. Thus, the voltage
difference between the source and drain terminals can be
neglected. Following [4], we plot in Fig. 1(c–e) the energy diagram
for an arbitrary gate voltage bias. The applied gate voltage Ug is
equal to voltage drop across the capacitance and the voltage
associated with the quasi-Fermi level, μ=e, of the graphene
monolayer:

Ug ¼Q=Cþμ=e ð2Þ

where Q is the charge density, C ¼ ϵ0ϵ=d is the capacitance per
unit area; d is the gate thickness; ϵ0 and ϵ are the permittivity of
free space and the relative permittivity of the monolayer substrate,
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respectively. It is to be noted that Eq. (2) gives the total capacitance
Ctot ¼ dQ=dUg of the graphene structure as 1=Ctot ¼ 1=Cþ1=Cq,
where Cq ¼ edQ=dμ is the so-called [5,6] quantum capacitance.
Usually, it is assumed that C5Cq, therefore the charge density in
the graphene monolayer is given by the simple relationship
Q ¼ CUg known within conventional field-effect formalism.

In general, the graphene can exhibit the charge neutrality state
Q¼0 at a certain Fermi energy. Without chemical doping, the
charge neutrality state is exactly that associated with the Dirac
point. Chemical doping shifts the DP state with respect to the
charge neutrality state. For simplicity, we further neglect the
chemical doping.

Using the Gibbs statistics, we can distinguish the components
of the thermodynamic potential for electrons (e),Ωe, and holes (h),
Ωh, and, then represent them as it follows:

Ωe ¼ �kT∑
k
ln 1þeðμ�EðkÞÞ=kT
� �

;

Ωh ¼Ωeð�μÞ; ð3Þ

which gives the electron (hole) concentration as

N¼ � ∂Ωe

∂μ

� �
T
; P ¼ ∂Ωh

∂μ

� �
T
: ð4Þ

Using the monolayer density of states, DðEÞ ¼ 2jEj=πℏ2υ2, which
includes both the valley and spin degeneracies, we obtain

N¼NTF1ð1=ξÞ; P ¼Nð�ξÞ; ð5Þ
where ξ¼ kT=μ is the degeneracy parameter, Fn(z) is the Fermi
integral and, NT ¼ 2=πðkT=ℏυÞ2 is the distinctive density of carriers.
For two opposite cases of strong ξ51 and weak ξb1 degeneracy
the electron density yields

N¼NT
1

2ξ2
þπ2

6

 !
; ξ51 ð6Þ

N¼NT
π2

12
þ ln 2

ξ
þ 1

4ξ2

 !
; ξb1: ð7Þ

At T¼0 Eq. (6) gives the density of degenerate electrons as
N0 ¼ 1=πðμ=ℏυÞ2. At the Dirac point μ¼0 Eq. (7) yields the intrinsic
electron (hole) densities as Ni ¼ Pi ¼NTπ2=12.

Using Eq. (5) one can easily calculate the monolayer graphene
charge density, Q, and the conductivity, σ, as it follows:

σ ¼ eμehðNþPÞ; Q ¼ eðN�PÞ: ð8Þ
For simplicity, we further assume a constant mobility, μeh, for both
kinds of carriers. In Fig. 2, we plot the dependence of the
conductivity vs charge density Q=e. As expected, the dependence
σðQ Þ is symmetric and, moreover, exhibits the minimum conduc-
tivity, σmin ¼ 2eμehNi � T2, at the Dirac point. In the vicinity of the
DP, when jξjb1, the conductivity yields σ ¼ σminð1þaQ2=e2N2

i Þ,
where a¼ π2=192ðln 2Þ2 � 0:107. Recently, the conductivity of
ultra-high mobility graphene was found [7] to follow the quadratic
law specified above. For the strongly degenerate case jξj51, we
obtain σ ¼ μehjQ j � jUgj. It is instructive to estimate the typical
Fermi energies and carrier densities. For Fermi energy μ¼0.2 eV
and υ¼ 8� 107 cm/s, we obtain the electron density as

Fig. 1. (a) Experimental setup for gated graphene. (b) Band structure at kC0, which shows the Dirac cones. The energy diagram for (c) Ug ¼ 0, (d) Ugo0 and (e) Ug40. χm is
the metal work function, and Xi is the electron affinity of the insulator.

Fig. 2. Conductivity of monolayer graphene at T¼100; 273 K and μeh ¼ 2:5�
103 cm2=Vs vs the charge density.
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