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H I G H L I G H T S

� Geometric phase in semiconductor microcavities.
� Dynamics of geometric phase in cavity dissipation.
� Solution of master equation of the system under certain conditions.
� Effect of excitonic spontaneous emission.
� Control of the geometric phase evolution and system dynamics.
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a b s t r a c t

We present rigorous investigations of the geometric phase in semiconductor microcavities. The effects of
excitonic spontaneous emission, initial state setting and cavity dissipation have been discussed. It is
shown that the geometric phase decays exponentially due to the presence of excitonic spontaneous
emission. More importantly, the inclusion of the phase shift leads to an enhanced sensitivity for the
control of the geometric phase evolution and system dynamics.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years much attention has been paid to the quantum
phases such as the Pancharatnam phase which was introduced in
1956 by Pancharatnam [1] in his studies of interference effects of
polarized light waves. The geometric phase (Berry phase) which
was realized in 1984 by Berry [2] is a generic feature of quantum
mechanics, and it depends on the chosen path in the space
spanned by all the likely quantum states for the system. The
definition of phase change for partial cycles was obtained by
Jordan [3]. The ideas of Pancharatnam were also used by Samuel
and Bhandari [4,5] to show that for the appearance of Panchar-
atnam's phase the system needs to be neither unitary nor cyclic
[6,7], and may be interpreted by quantum measurements.

Presently the models of quantum computation in which a state
is an operator of density matrix are developed [8]. It is shown [9]
that the geometric phase shift can be used for generating fault-
tolerance phase shift gates in quantum computation. Many gen-
eralizations have been proposed to the original definition [10–13].
The quantum phase, including the total phase as well as its
dynamical and geometric parts, of Pancharatnam type is derived
for a general spin system in a time-dependent magnetic field
based on the quantum invariant theory [14]. Another approach
that provides a unified way to discuss geometric phases in both
photon (massless) and other massive particle systems was devel-
oped by Lu [15]. Also, an expression for the Pancharatnam phase
for the entangled state of a two-level atom interacting with a
single mode in an ideal cavity with the atom undergoing a two-
photon transition was studied [13]. To bring the two-photon
processes closer to the experimental realization, the effect of the
dynamic Stark shift in the evolution of the Pancharatnam phase
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has been presented [12]. More recently, a method for analyzing the
geometric phase for N two-level system of superconducting charge
qubits interacting with a microwave field is proposed [16] and
through a simple but universal system (two-level atom) a possi-
bility to control the Pancharatnam phase of a quantum system
on a much more sensitive scale than the population dynamics
has been reported [17,48]. Experiments are proposed for the
observation of the nonlinearity of the Pancharatnam phase with
a Michelson interferometer in Ref. [18].

The effective decoherence resulting from a quantum system
interacting with an environment provides a natural mechanism for
the transition from quantum to classical behavior for an open
system [19]. The decoherence has been an integral part of several
programs addressing the emergence of classicality [20–22]. The
physics of decoherence became very popular in the last decade,
mainly due to advances in the technology. In several experiments
the progressive emergence of classical properties in a quantum
system has been observed [23,24], in agreement with the predic-
tions of the decoherence theory. The second important reason for
the popularity of decoherence is its relevance for quantum
information processing tasks, where the coherence of a relatively
large quantum system has to be maintained over a long time.

In this paper we focus on the dynamics of geometric phase in a
semiconductor cavity QED containing a quantum well coupled to
the environment. The paper is organized as follows: In Section 2,
we introduce a model for the quantum system. In Section 3, we
present the evolution equations and the geometric phase. Numer-
ical results and discussion is presented in Section 4. Finally, a
conclusion is given in Section 5.

2. Model

The considered system is a quantum well confined in a
semiconductor microcavity. The detailed description of this system
is given in Refs. [25,32]. The effective Hamiltonian describing the
exciton–photon coupling in the cavity without spin effects is given
as [26–33]

H ¼ ℏωpa†aþℏωeb
†bþ ıℏg0ða†b�b†aÞ

þℏα0b†b†bbþ ıℏðε0eıωta†�h:c:Þ; ð1Þ

where ωp, ω and ωe are the frequencies of the cavity, laser pump
and exciton respectively. We restrict our study to the total
resonant case where the pumping laser, the cavity and the exciton
are in resonance (ω¼ωp ¼ωe). The bosonic operators a and b are
describing the photonic and excitonic annihilation operators,
respectively, and verifying ½a; a†� ¼ 1; ½b; b†� ¼ 1. g0 represents the
photon–exciton coupling constant. α0 is the strength the nonlinear
exciton–exciton scattering due to the Coulomb interaction [34,35].
The amplitude of the interaction of the external driving laser field
with the cavity is represented by ε0. The first and second terms in
Eq. (1) describe the photonic and excitonic free energy, respec-
tively, the third term represents the interaction exaction–photon
the fourth term designs the interaction exaction–exaction and the
last term describes the coherent pump of the cavity. We have
neglected also the photon–exciton saturations effects in Eq. (1). It
is shown that these effects give rise to small corrections compared
to the nonlinear exciton–exciton scattering [27,36,37]. Further-
more, we assume that the thermal reservoir is at T¼0 and we
neglect the nonlinear dissipations [38], then the master equation
can be written as [39–43]

∂ρ
∂t

¼ iℏ½H1;ρ�þκð2aρa†�a†aρ�ρa†aÞ

þγ=2ð2bρb†�b†bρ�ρb†bÞ; ð2Þ

where

H1 ¼ � ıαb†b†bbþgða†b�b†aÞþεða†�aÞ; ð3Þ
where t is a dimensionless time normalized to the round trip time
τc in the cavity, and we normalize all constant parameters of the
system to 1=τc as g¼ g0τc; ε¼ ε0τc; α¼ α0τc . γ=2 and κ represent
respectively the normalized excitonic spontaneous emission and
the cavity dissipation rates.

Eq. (2) is a master equation, the term iℏ½H1;ρ� corresponds to
the evolution of the density matrix (it corresponds to where H1 is
the Hamiltonian in the interaction picture) the last two terms take
into account the coupling the environment through the excitonic
γ=2 and the cavity κ dissipation. It is valid for weak and strong
coupling. Strong coupling when the coupling is bigger than the
dissipation so that the effect of the dissipation like a perturbative
and the weak coupling regime is for the dissipation is much
greater than the coupling.

In the strong coupling the phase oscillates with high frequency
because the coupling between exaction and photon is big which
induces rapid exchange of energy. By increasing the dissipation
(moving from strong coupling to weak coupling regime) the
amplitude of the phase reduces.

In the weak excitation regime ε=κ≪1 [44,45], the density
matrix can then be factorized as a pure state [35,44–46]. The
dynamics of the systems can be described by a non-Hermitian
Schrödinger equation

ıℏ
djψ ðtÞ〉

dt
¼Heff ψ ðtÞ〉;

�� ð4Þ

where the effective non-Hermitian Hamiltonian Heff can be written
as (see Appendix A)

Heff ¼ ıℏgða†b�b†aÞþℏαb†b†bb

þ ıℏεða†�aÞ� ıℏκa†a� ıℏ
γ
2
b†b: ð5Þ

In this weak excitation regime, the wave function jψ ðtÞ〉 can be
written as a superposition of tensor product of pure excitonic and
photonic states [35,44–46]

jψ ðtÞ〉¼ j00〉þA10ðtÞj10〉þA01ðtÞj01〉
þA11ðtÞj11〉þA20ðtÞj20〉þA02ðtÞj02〉; ð6Þ

where jij〉¼ ji〉 � jj〉 is the state with i photons and j excitons in the
cavity. The term ℏεa in the expression of the effective non-
Hermitian Hamiltonian equation (5) can be neglected [44–46].
By substituting Eqs. (5) and (6) into Eq. (4), we have derived the
following differential equations for the amplitudes Aij(t):

d
dt
A10 ¼ εþgA01�κA10;

d
dt
A01 ¼ �gA10�

γ
2
A01;

d
dt
A11 ¼

ffiffiffi
2

p
gA02�

ffiffiffi
2

p
gA20�ðκþγ=2ÞA11þεA01;

d
dt
A20 ¼

ffiffiffi
2

p
gA11�2κA20þ

ffiffiffi
2

p
εA10;

d
dt
A02 ¼ �

ffiffiffi
2

p
gA11�2ıαA02�γA02: ð7Þ

In order to get the wave function (6), we must solve the system of
differential equations (7), which will be used in the next sections
extensively to calculate the Berry phase.

3. Geometric phase

For the quantum system evolving from an initial wavefunction
to a final wavefunction, if the final wavefunction cannot be
obtained from the initial wavefunction by a multiplication with a
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