
Connection between bound state and tunneling problems

M. Bosken, A. Steller, B. Waring, M. Cahay n

Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, United States

H I G H L I G H T S

� This paper shows the connection between bound states and tunneling problems.
� The transfer matrix is used to describe the bound state and tunneling problems.
� The approach can easily be taught in an introductory class in quantum mechanics.
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a b s t r a c t

The transfer matrix formalism is used to show that the problem of finding the bound states of a quantum
well with an arbitrary one-dimensional potential energy profile Ec(x) can be reformulated as a tunneling
problem. The following theorem is proved: for an electron confined to a quantum well of size W with an
arbitrary conduction band energy profile Ec(x) and maximum depth V0, the bound state energies (E1, E2,
E3,…) can be found by adding a barrier of width d and height V0 on either side of the quantum well and
calculating the energies at which the transmission through the resulting resonant tunneling structure
reaches unity. More precisely, the energies at which the transmission coefficient reaches unity converge
towards the bound state energy levels when the thickness d tends to infinity. Numerically, the bound
state energies can be determined with enough accuracy by using barrier thicknesses of a few nm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Simple bound state problems such as the particle-in-a-box, the
attractive delta scatterer, the finite square well, and the harmonic
oscillator and tunneling problems such as tunneling through a
positive delta scatterer, a potential step, and a rectangular barrier
are covered in most textbooks in quantum mechanics [1,2]. These
problems have (sometimes lengthy) analytical solutions or can be
reduced to the solutions of transcendental equations which can be
solved numerically without too much effort [3,4]. A general
approach to treat both bound state and tunneling problems based
on the transfer matrix approach [5–11] has been used extensively
in the past to study more complicated problems such as bound
states of arbitrary quantum wells [12] and finite periodic poten-
tials [13] and tunneling through finite repeated structures [14–17].

Hereafter, the power of the transfer matrix formalism [18] is used
to show that the problem of finding the bound states of an arbitrary
confined one-dimensional potential energy profile Ec(x) can be
reformulated as a tunneling problem. More specifically, the following
theorem is proved: for an electron confined to a quantumwell of size

W with an arbitrary conduction band energy profile Ec(x) and
EcðxÞ ¼ V0 for x outside the well, as shown in Fig. 1, the bound state
energies (E1, E2, E3,…) can be found by adding two barriers of width d
and height V0 and calculating the energies at which the transmission
probability TðEÞ through the resonant tunneling structure so formed
reaches unity. The energies at which the transmission coefficient
reaches unity converge towards the bound state energy levels when
the thickness d tends to infinity. The theorem is proved for the case of
a spatially independent effective mass but can be easily extended to
the case of a spatially varying effective mass.

Numerically, the bound state energies can be determined with
enough accuracy by using barrier thicknesses of a few nm. The
approach can easily implemented numerically and is illustrated
hereafter with several numerical examples in which the conduc-
tion band energy profile within the quantumwell is approximated
by a series of randomly distributed steps where the conduction
band profile is assumed to be constant.

The physics behind the connection between the bound state
and tunneling problems is as follows: the transmission probability
through the resonant tunneling device peaks whenever multiple
reflections between the barriers lead to a build up of the prob-
ability density inside the well. This buildup corresponds to the
formation of quasi-bound states in the well which are increasingly
less leaky (i.e., their lifetime τ gets larger) as the width of the
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barriers decreases. A quantitative estimate of the quasi-bound
states lifetime can be obtained from the relation, ΔEτ� ℏ where
ΔE is the full width at half maximum of the resonant peaks in TðEÞ.
As d increases ΔE decreases towards zero and τ gets larger, in
agreement with an infinite lifetime for true bound states.

The paper is outlined as follows. Section 2 contains the
description of the tunneling and bound states problems depicted
in Fig. 1 in terms of the transfer matrix [18] and the connection
between the two problems is established. Section 3 described
several numerical examples to illustrate the theorem above.
Section 4 contains our conclusions.

2. Proof of theorem

A. Tunneling problem: We first consider the tunneling through
the resonant tunneling device shown in Fig. 1 using the bottom of
the quantum well as the zero of energy. Calling Vo the maximum
depth of the quantum well, the transfer matrix for each barrier on
either side of the quantum well for ErV0 is given by [18]

WB ¼
cshðκdÞ κshðκdÞ
shðκdÞ
κ cshðκdÞ

 !
ð1Þ

where κ ¼ 1=ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðVo�EÞ

p
. For the resonant tunneling device, the

overall transfer matrix is given by the product of the following
three matrices [18]:

WTOT ¼WBWwellWB; ð2Þ
where

Wwell ¼
ϕ0

1ðLÞ ϕ0
2ðLÞ

ϕ1ðLÞ ϕ2ðLÞ

 !
ð3Þ

is the transfer matrix associated with the well region where the
functions ϕ1ðxÞ and ϕ2ðxÞ are two linearly independent solutions
of the Schröedinger equation satisfying the boundary conditions
ϕ0

1ð0Þ ¼ 1, ϕ1ð0Þ ¼ 0, ϕ0
2ð0Þ ¼ 0, and ϕ2ð0Þ ¼ 1.

Performing the multiplication, we obtain

WTOT ¼ cosh2 κd
1 κ tanh κd

tanh κd
κ 1

 !

ϕ0
1þϕ0

2ðLÞ tanh κd
κ κϕ0

1ðLÞ tanh κdþϕ0
2ðLÞ

ϕ1ðLÞþϕ2ðLÞ tanh κd
κ κϕ1ðLÞ tanh κdþϕ2ðLÞ

0
@

1
A; ð4Þ

In the limit where d-1, we have

WTOT ¼ csh2κd
1 κ
1
κ 1

 !
ϕ0

1ðLÞþϕ0
2ðLÞ
κ κϕ0

1ðLÞþϕ0
2ðLÞ

ϕ1ðLÞþϕ2ðLÞ
κ κϕ1ðLÞþϕ2ðLÞ

0
@

1
A ð5Þ

Multiply the last two matrices, we get for the elements of the
matrix WTOT

W11
TOT ¼ cosh2 κdðϕ0

1ðLÞþ
ϕ0

2ðLÞ
κ

þκϕ1ðLÞþϕ2ðLÞÞ; ð6Þ

W22
TOT ¼W11

TOT ; ð7Þ

W12
TOT ¼ cosh2 κdðκϕ0

1ðLÞþϕ0
2ðLÞþκ2ϕ1ðLÞþκϕ2ðLÞÞ; ð8Þ

and

W21
TOT ¼ cosh2 κd

ϕ0
1ðLÞ
κ

þϕ0
2ðLÞ
κ

þϕ1ðLÞþ
ϕ2ðLÞ
κ

� �
: ð9Þ

The transmission probability through the resonant tunneling
structure depends on the elements of the transfer matrix and
reaches unity when the two following conditions are satisfied [16]

WTOT
12 ¼WTOT

21 ¼ 0; ð10Þ
and

WTOT
11 þWTOT

22 ¼ 2: ð11Þ
Using Eqs. (6)–(9), these last two conditions amount to the
following requirement:

κϕ0
1ðLÞþϕ0

2ðLÞþκ2ϕ1ðLÞþκϕ2ðLÞ ¼ 0: ð12Þ
B. Bound state problem: Next we prove that Eq. (12) is also the

condition equation which must be satisfied to find the bound
states in the well. With the zero of energy at the bottom of the
well, the solutions of the Schröedinger equation for the boundstate
problem are given by

In region I ðxo0Þ:
ψ I ¼ A1eκxþB1e�κx: ð13Þ
In region II ð0oxoWÞ:
ψ II ¼ A2ϕ1ðxÞþB2ϕ2ðxÞ; ð14Þ
and in region III ðx4WÞ:
ψ III ¼ A3eκðx�wÞ þB3e�κðx�wÞ; ð15Þ
where κ ¼ 1=ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV0�jEjÞ

p
.

Matching the wavefunction and its derivative at x¼0, we get
the following relations between the coefficients ðA1;B1Þ and
ðA2; B2Þ
κ �κ
1 1

� � A1

B1

" #
¼

ϕ0
1ð0Þ ϕ0

2ð0Þ
ϕ1ð0Þ ϕ2ð0Þ

 !
A2

B2

" #
: ð16Þ

Similarly at x¼W, we get

ϕ0
1ðLÞ ϕ0

2ðLÞ
ϕ1ðLÞ ϕ2ðLÞ

 !
A2

B2

" #
¼ κ �κ

1 1

� � A3

B3

" #
: ð17Þ

The coefficient B1 ¼ 0 must be zero for the wavefunction to be
well-behaved for xo0.

Since ϕ0
1ð0Þ ¼ 1, ϕ1ð0Þ ¼ 0, ϕ0

2ð0Þ ¼ 0, and ϕ2ð0Þ ¼ 1, Eq. (16)
becomes

A2 ¼ κA1; ð18Þ
and

B2 ¼ A1: ð19Þ
Eq. (17) can be expanded as follows:

A2ϕ
0
1ðLÞþB2ϕ

0
2ðLÞ ¼ κA3�κB3; ð20Þ

Fig. 1. Schematic of a quantum well (dashed line) of width W with an arbitrary
potential energy profile and a maximum depth V0. The zero of energy is selected as
the minimum of EcðxÞ in the quantum well. The horizontal dash-dotted lines
represent the three lowest bound state energies in the well, E1, E2, and E3. The latter
coincide with the energies of unit transmission for an electron incident from the
left contact on a resonant tunneling device formed by adding cladding barriers of
width d and height Vo when d is large; r and t are the reflection and transmission
amplitudes, respectively, for an electron incident from the left with wavevector k0.
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