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H I G H L I G H T S

� We point out the possibility of BEC of paired photon-dressed electrons in graphene.
� Analytically we calculate the fraction of condensed photon-dressed electron pairs.
� The condensation presents a strong dependence on the electron–photon bound energy.
� The pairing grows with the field, presenting a crossover from BCS state to BEC.
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a b s t r a c t

In this paper we point out the possible observation of the Bose–Einstein condensation for a gas of paired
photon-dressed electrons in a graphene monolayer. At T¼0 the condensation presents a strong crossover
from the BCS state to the Bose–Einstein condensate. In an explicit way we calculated the fraction of
condensed photon-dressed electron pairs as a function of the photon–electron bound energy and the
temperature. The range of coherence of condensed quasiparticles is circumscribed to local bound states,
where the Off-diagonal long-range order is guaranteed via the BCS state.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The low energy excitations are Dirac electrons, which possess
linear energy dispersion similar to photons in the electromagnetic
radiation. Such unique energy structure in graphene monolayers
radically affects its properties. In particular, electrical and optical
features in graphene under intense ac fields have been the object
of research, having found that intense ac radiation can shockingly
change the energy structure in graphene, as well as the density of
states [1–3], and a variety of phenomena, such as a photovoltaic
Hall effect [4], valley-polarized currents [5], and a photoinduced
quantum Hall effect in the absence of magnetic field [6], have been
predicted. On the other hand, theoretically was predicted by Kibis
[7] that, around Dirac points can be observed a set of local bound
states, which are associated to photon-dressed electron quasipar-
ticles or simply photon-dressed electrons. Such a type of quasi-
particles has been related to metal–insulator transition [7],
dissipationless electron transport without Joules heating [8],

magneto-optical Franz–Keldysh effect [9], as well as anomalous
photon-assisted tunneling [10] and many other phenomena. In
this context, in this paper we point out the possible observation of
the Bose–Einstein condensation (BEC) for a gas of photon-dressed
electrons in a graphene layer embedded in an optical microcavity.

After the discovery of BEC in atomic dilute gases, a great
interest has risen in the study of this state in several quasiparticle
systems of solid state physics [11]. Graphene represents a promis-
ing material for the achievement of this phenomenon as well as
the superconducting state, which has been formulated through
various mechanisms of electron pairing as the electron–phonon or
electron–plasmon [12–17], where the chemical potential is shifted
from Dirac points, generating an energy gap in full consistence
with experimental data in doped and metal coated graphene
[18–20] and also in graphite structures [21].

On the other hand, several authors [22,23] have predicted the
realization of excitonic BEC in graphene bilayers. The proposed
configuration is basically a spaced graphene bilayer system, which
is a tunable gap semiconductor [24], where electrons and holes are
induced by external gates and coupled via interlayer Coulomb
interaction. Also BEC of indirect magnetoexcitons has been
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analyzed in graphene bilayers [25] and superlattices [26] as well as
polaritonic and magnetopolaritonic [27] BEC in a graphene mono-
layer placed in an optical microcavity, where a strong exciton–
photon coupling takes place.

Normally, it is known that only Bose particles undergo BEC at a
critical temperature as is the case for excitons, polaritons, etc. In
the presented here effect, photon-dressed electrons belong to
Fermi ensembles, which cannot condensate in a similar way as
Bose systems do it. As was shown by Yang [28], the existence of
Off-diagonal long-range order in the coordinate space representa-
tion via the BCS state in Fermi systems allows, eventually, a
condensation of particle pairs, which number is the largest
eigenvalue of the two-body density matrix. The foregoing is a
difference between the superconducting state in graphene shown
in Refs. [12–17], independently of the type of electron pairing
mechanism, and the presented here condensation of paired
photon-dressed electrons. The purpose of this work is to show in
a qualitative way that Bose–Einstein condensation can take place
in graphene for a gas of paired photon-dressed electrons, which
number, even at T¼0, can be finite and controlled via the photon–
electron bound energy. It is known from classical works of Keldysh
and Kozlov [29] that both effects (BEC and Superconductivity) are
two aspects of the same phenomenon, and in this sense, in this
work we have neglected the fact that the superconducting state
essentially occurs as a consequence of BEC of involved Fermi
particles, focusing only in the BEC state.

The paper is organized as follows: In Section 2, we determine
the spectrum and the density of states for photon-dressed elec-
trons in a graphene layer. In Section 3, explicit expressions for the
condensate fraction of paired photon-dressed electrons are calcu-
lated and in Section 4, we summarize the basic ideas of the
presented work.

2. Density of states of photon-dressed electrons

When a graphene sample is placed inside a planar optical
cavity and driven by an intense ac field, a strong coupling takes
place between the electrons in the graphene layer and the field
photons, which are emitted and reabsorbed by electrons. The
Hamiltonian for electron states in the vicinity of Dirac points in a
graphene layer, placed in the x�y plane, can be written as follows:

Ĥo ¼ vf ŝ � ðp̂þeÂðr; tÞÞ; ð1Þ

where vf, s and p̂ are the Fermi velocity, the Pauli matrices and the
electron momentum respectively. Within the standard quantum
field theory and assuming the electromagnetic field to be circu-
larly polarized, the Aðr; tÞ vector potential for the electromagnetic
radiation can be described in terms of the second quantization
operators of creation and annihilation as follows:

Âðr; tÞ ¼∑
ı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

ωıϵ0LS

s
ðêþ b̂ ıþ ê� b̂

†

ı Þ; ð2Þ

where the unitary vectors ê7 ¼ ðex7 ieyÞ=
ffiffiffi
2

p
are the polarization

vectors of the radiation, ωı is the mode frequency, S is the area of
the layer, L is the transversal size of the cavity and ı¼ þ ; �
corresponds to clockwise and counterclockwise circularly polar-
ized photon modes in the cavity, respectively. After replacing the
expression (2) in Eq. (1), the Ĥo Hamiltonian takes the form:

Ĥo ¼ ℏvf ðs� p̂þ þsþ p̂� Þþ∑
ı
Eıðs� b̂

†

ı þsþ b̂ ıÞ: ð3Þ

In the above equation we have introduced the quantities
Eı ¼ evf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ=ωıϵoLS

p
and p̂7 ¼ p̂x7 ip̂y. The eigenvalues related

to the Ĥo operator are

ϵ2 ¼∑
ℓı ;ı
ϵ2ℓı þ∑

kı ;ı
ϵ2kı : ð4Þ

where ϵℓı ¼ Eı
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nıþð171Þ=2

p
and ϵkı ¼ ℏvf k. The parameter ℓı is

associated to states where the electron is in one of two quantum
states with spin 71=2 and the electromagnetic field is in the state
with quantum occupation number Nı. As it is clear from Eq. (4), a
double degeneracy associated to different j71=2;Nı〉 and
j81=2;Nıþ1〉 states appears in the system. In what follows, the
eigenstates related to the Hamiltonian can be rewritten as follows:

ψℓı ¼
j71=2;Nı〉

sj81=2;Nıþ1〉

 !
; ð5Þ

where s¼ 71. In the jℏvf kj=jϵℓı jo1 limit near the band edge and
in the effective mass approximation, the expression in Eq. (4)
corresponds to the energy of quasiparticles with bound energy ϵℓı
related to clockwise and counterclockwise polarizations and in-
plane dispersion spectrum ϵkı ¼ ℏ2k2ı =2m

n, which is linked to the
translational motion. Here mn is the effective mass for the photon-
dressed electron quasiparticle. In this context, k is the wave vector
related to the photon-dressed electrons, which is quite different
from the wave vector for the bare Dirac electron. Classically, as it
was pointed out in Ref. [7], these states represent rotating states of
electron motion due to the interaction with a circularly polarized
radiation. The foregoing can be better understood in the
Nı �Noc1 limit, which corresponds to the quasi-classical strong
field. A bound energy ϵℓı � εg ¼ 2vf eEo=ω emerges in the photon-

dressed electron spectrum in graphene, where Eo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πNoℏω=ϵoA

p
is the amplitude for the classical electromagnetic field. Therefore,
we can rewrite Eq. (4) as follows:

ζ ¼ εgþ
ℏ2k2

2mn
; ð6Þ

Here we have introduced ζ2I¼ ϵ2I�Ko, where Ko is defined by the
expression

Ko ¼ E2ı 0
0 0

 !
: ð7Þ

The expression in Eq. (6) corresponds to the energy spectrum of a
charged quasiparticle with effective mass

1
mn

�
v2f
εg

1�
v2f ℏ

2k2

4ε2g
þ
v4f ℏ

4k4

8ε4g
�⋯

" #
: ð8Þ

Near the band edge i.e. for k-0 states, the expression for the
quasiparticle mass takes a more compact form mn � εg=v2f . As we

will see later, εg is the key quantity in the presented theory, which
plays a crucial role in the crossover from the BCS state of Cooper
pairs of photon-dressed electrons to the BEC.

The spectrum in Eq. (4) is a solution of the time-independent
Dirac equation in a non-perturbative approach and, therefore, it
will be explicitly present in all features perceptible to the density
of states (DOS) of charge carriers. The DOS of the system can be
separated into DðϵÞ ¼DðϵℓÞþDðϵkÞ, where DðϵℓÞ and DðϵkÞ are the
densities of states for bound and extended states respectively. The
DOS linked to extended states looks similar to the 2D uniform gas,
while DðϵℓÞ is non-vanishing within the range of local states. In
this connection, the DOS for bound electron-photon states is of the
form

DðϵℓÞ ¼ �gs
π

Im Tr GðϵℓÞ: ð9Þ

The stationary Green function of the Ĥ Hamiltonian for bound
states is a 2�2 matrix, which can be obtained from the standard
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