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H I G H L I G H T S

� Developing a meshless nonlocal
shell model for vibration and buck-
ling analysis of SWCNTs.

� Applying the MLPG method to
numerically solve the problem.

� Exploring the effects of nonlocal
parameter and geometry and bound-
ary conditions.

� Calibrating the nonlocal parameter
with MD simulations.

G R A P H I C A L A B S T R A C T

A size-dependent meshfree shell model is developed to describe vibration and buckling characteristics
of SWCNTs. The model is validated by MD simulations.
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a b s t r a c t

The meshless local Petrov–Galerkin (MLPG) method is implemented to analyze the free vibration and
axial buckling characteristics of single-walled carbon nanotubes (SWCNTs) with different boundary
conditions. To this end, a nonlocal shell model accounting for the small scale effect is used. In the
theoretical formulations, a variational form of the Donnell shell equations is constructed over a local sub-
domain which leads to derivation of the mass, stiffness and geometrical stiffness matrices. Comprehen-
sive results for the resonant frequencies and critical axial buckling loads of SWCNTs are presented. The
influences of boundary conditions, nonlocal parameter and geometrical parameters on the mechanical
behavior of SWCNTs are fully investigated. The results obtained from the present numerical scheme are
shown to be in good agreement with those from exact solution for simply-supported SWCNTs and those
of molecular dynamics simulations. It is shown that the natural frequencies and critical axial buckling
loads of SWCNTs are strongly dependent on the small scale effect and geometrical parameters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, nano-sized structures have gained
considerable interest in the research community as reflected by
the surge of the nano-related publications. Since the publication of
Iijima's paper in 1991 on carbon nanotube (CNT) [1], this nanos-
tructure has become one of the hottest frontiers in different fields
of science due to its superior mechanical and electrical properties.

The fundamental building block of CNTs is single-walled carbon
nanotubes (SWCNTs) which are the cylinders with the thickness of
one atom and can be described as a rolled-up graphene sheet. One
of the efficient techniques that usually used to understand the
behavior of nanostructures is continuum-based modeling [2]. To
incorporate the small size effects into the continuum models,
some researchers have suggested the application of nonlocal
version of continuum mechanics proposed by Eringen [3,4]. The
nonlocal continuum theory was initially introduced to nanotech-
nology by Peddieson et al. [5] which motivated many other
researchers to use nonlocal models in the analysis of nanostruc-
tures [6–24]. Considerable studies on vibrational and buckling
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responses of CNTs using nonlocal continuum mechanics have been
carried out, in which some have been organized on the basis of
beam models [6–17] and some others based on the shell models
[18–24]. By adjusting the nonlocal parameter, the nonlocal shell
models have the capability to predict accurate results, which are
comparable to those of atomistic approaches such as molecular
dynamics (MD) simulations. As seen from the previous studies on
the behaviors of CNTs, most of them have been limited to simply-
supported nanotubes for which exact solution exists. In the
computational nanomechanics, developing influential techniques
capable of treating various boundary conditions are clearly indis-
pensable. Recently, meshless methods have become attractive
alternatives for solving problems, as they do not rely on a grid
or a mesh and employ a set of scattered nodes to discritize the
problem domain. They are proposed to overcome some short-
comings of classical mesh-based methods such as finite element
method (FEM), including the need for re-mesh to be more
accurate, inaccuracy near the boundaries of problem, mesh dis-
tortion in large deformation problems, etc. [25]. The meshless
methods were originated in 1977 by Lucy who used the smooth
particle hydrodynamics (SPH) method for modeling astrophysical
phenomena [26]. At present, there are many meshfree methods
including the diffuse element method (DEM) [27], the element-
free Galerkin (EFG) [28], the point interpolation method (PIM)
[29], the reproducing kernel particle (RKP) [30], the partition of
unity method (PUM)[31], hp-clouds [32], the natural element
method (NEM) [33], the meshless local Petrov–Galerkin (MLPG)
[34,35], the local point interpolation method (LPIM) which is
based on the idea of the MLPG approach [36] and so on, in which
different interpolation techniques are used. Unlike the MLPG, most
of the meshless methods are not truly meshless techniques due to
using background cells for integration of a weak form over the
problem domain. In the MLPG method, no element is used for
interpolation and integration. Also, the nodal trial and test func-
tions can be chosen from different spaces which classified the
MLPG method as MLPG1 to MLPG6 [37,38]. The MLPG method has
been applied for the static analysis of two-dimensional solids and
one-dimensional beams in [39]. Gu and Liu [40] proposed the
MLPG formulation for the free vibration and forced vibrations of
two-dimensional structures by using the moving least squares
approximation as the shape function. Their results demonstrated
the convergence, efficiency and flexibility of the MLPG approach.
In the present work, as an applicable computational method in the
area of nanotechnology, the moving least squares (MLS) interpola-
tion is employed to construct both trial and test functions which
labeled as MLPG6. The main purpose of this study is to analyze the
free vibration and axial buckling characteristics of SWCNTs with
arbitrary boundary conditions via a nonlocal shell model in which
the small length-scale effect is taken into account. The obtained
results from the present model are assessed by those of MD
simulations and the appropriate nonlocal parameters are proposed
for each chirality and boundary condition. Moreover, the evaluated

results of the simply-supported SWCNT are compared with those
of obtained by exact analytical solution.

2. Meshless local Petrve–Galerkin method

In the meshless local Petrove–Galerkin method, the global
domain of problem Ω constructed from a set of scattered nodes,
as shown in Fig. 1. This method is conventionally based on a local
approximation or interpolation to introduce the trial function and
a local weak form through the use of weighted-residual procedure.
In the present study, the local variational form is constructed over
a local sub-domain Ωs bounded by Γs (see Fig. 1). The sub-domains
which have very simple shapes such as a linear support domain for
one-dimensional problems and a circle or a rectangular in two-
dimensional problems, entirely situated on the global domain and
could overlap each other. The variational form over a local
quadrature domain is integrated in which the domains of other
nodes are not taken into account. Since there is no need for any
meshes or background cells for interpolation or integration pur-
pose, the method is known as a “truly” meshless one. Thus, there
are two local domains centered by node i: local integration
domain ΩQ and local interpolation domain Ωi for Guass integra-
tion point xQ , as shown in Fig. 1. It should be noted that for
performed local variational forms, the test function and local
integration domains are the same. The implementation of this
method for vibration and buckling analysis of a SWCNT will be
discussed later on.

2.1. Moving least squares approximation

In the present MLPG method, the nodal trial function and test
function are chosen from the same function space and correspond
to the Moving Least Squares (MLS) approximation. A function vðxÞ
can be approximated by vhðxÞ in the sub-domain Ωs as

νhðxÞ ¼ ∑
n

I ¼ 1
qIðxÞbIðxÞ ¼ qT ðxÞbðxÞ ð1Þ

where qIðxÞ are the monomial basis functions, bI xð Þ are the
corresponding coefficients and n is the number of nodes located
in the local interpolation domain. The commonly used monomial
basis functions and the first derivation of them are given as

qT ¼ ½1; x; x2;…; xM � ð2Þ

qTx ¼ ½0;1;2x;…;MxM�1� ð3Þ
in which M is the number of basis functions.

The unknown coefficients bI xð Þ are obtained by the minimiza-
tion of a weighted discrete L2 norm

Г ¼ ∑
n

I ¼ 1
ωðx�xIÞ ½qT ðxIÞbðxÞ�vI �2 ð4Þ

Fig. 1. Different sub-domains Ωs for each node consist of the local integration domain ΩQ for node xi and local interpolation domain Ωi for Guass integration point xQ
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